Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty (2404.10980v1)

Published 17 Apr 2024 in cs.CV and cs.LG

Abstract: Deep neural networks (DNNs) have been shown to perform well on exclusive, multi-class classification tasks. However, when different classes have similar visual features, it becomes challenging for human annotators to differentiate them. This scenario necessitates the use of composite class labels. In this paper, we propose a novel framework called Hyper-Evidential Neural Network (HENN) that explicitly models predictive uncertainty due to composite class labels in training data in the context of the belief theory called Subjective Logic (SL). By placing a grouped Dirichlet distribution on the class probabilities, we treat predictions of a neural network as parameters of hyper-subjective opinions and learn the network that collects both single and composite evidence leading to these hyper-opinions by a deterministic DNN from data. We introduce a new uncertainty type called vagueness originally designed for hyper-opinions in SL to quantify composite classification uncertainty for DNNs. Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets. The code and datasets are available at: https://github.com/Hugo101/HyperEvidentialNN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. Improvements on uncertainty quantification for node classification via distance-based regularization. In Advances in Neural Information Processing Systems (2023), 2023. URL https://arxiv.org/abs/2311.05795v1.
  2. Paul D Allison. Missing data. Sage publications, 2001.
  3. Uncertainty sets for image classifiers using conformal prediction. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=eNdiU_DbM9.
  4. Pitfalls of epistemic uncertainty quantification through loss minimisation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=epjxT_ARZW5.
  5. Uncertainty on asynchronous time event prediction. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/78efce208a5242729d222e7e6e3e565e-Paper.pdf.
  6. Posterior network: Uncertainty estimation without ood samples via density-based pseudo-counts. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.  1356–1367. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/0eac690d7059a8de4b48e90f14510391-Paper.pdf.
  7. Eliciting and learning with soft labels from every annotator. In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing, volume 10, pp.  40–52, 2022.
  8. Learning from partial labels. J. Mach. Learn. Res., 12(null):1501–1536, jul 2011. ISSN 1532-4435.
  9. G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems (MCSS), 2(4):303–314, December 1989. ISSN 0932-4194. doi: 10.1007/BF02551274. URL http://dx.doi.org/10.1007/BF02551274.
  10. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.  248–255, 2009. doi: 10.1109/CVPR.2009.5206848.
  11. Decomposition of uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In International Conference on Machine Learning, pp.  1184–1193. PMLR, 2018.
  12. Tiny imagenet visual recognition challenge. URL https://tiny-imagenet.herokuapp.com, 2015.
  13. Provably consistent partial-label learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.  10948–10960. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/7bd28f15a49d5e5848d6ec70e584e625-Paper.pdf.
  14. Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.
  15. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.  770–778, 2015.
  16. A baseline for detecting misclassified and out-of-distribution examples in neural networks. In International Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=Hkg4TI9xl.
  17. Long-tailed partial label learning via dynamic rebalancing. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=sXfWoK4KvSW.
  18. Audun Jøsang. Subjective Logic: A Formalism for Reasoning Under Uncertainty. Springer Publishing Company, Incorporated, 1st edition, 2016. ISBN 3319423355.
  19. Uncertainty characteristics of subjective opinions. In 2018 21st International Conference on Information Fusion (FUSION), pp.  1998–2005, 2018. doi: 10.23919/ICIF.2018.8455454.
  20. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
  21. A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis, Department of Computer Science, University of Toronto, 2009.
  22. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861–867, 1993a. ISSN 0893-6080. doi: https://doi.org/10.1016/S0893-6080(05)80131-5. URL https://www.sciencedirect.com/science/article/pii/S0893608005801315.
  23. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867, 1993b.
  24. Predictive uncertainty estimation via prior networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/3ea2db50e62ceefceaf70a9d9a56a6f4-Paper.pdf.
  25. Reverse kl-divergence training of prior networks: Improved uncertainty and adversarial robustness. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/7dd2ae7db7d18ee7c9425e38df1af5e2-Paper.pdf.
  26. George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, 1995.
  27. Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022. URL probml.ai.
  28. Dirichlet and Related Distributions: Theory, Methods and Applications. Wiley-Blackwell, United States, April 2011. ISBN 9780470688199. doi: 10.1002/9781119995784. Publisher Copyright: 2011 John Wiley & Sons, Ltd. All rights reserved. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.
  29. Active learning for object detection with evidential deep learning and hierarchical uncertainty aggregation. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=MnEjsw-vj-X.
  30. Human uncertainty makes classification more robust. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
  31. Complete monotonicity of a difference between the exponential and trigamma functions and properties related to a modified bessel function. Mediterranean Journal of Mathematics, 10:1685–1696, 2013.
  32. Decompositional generation process for instance-dependent partial label learning. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=lKOfilXucGB.
  33. Psyphy: A psychophysics driven evaluation framework for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 41(9):2280–2286, 2018.
  34. Classification with valid and adaptive coverage. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.  3581–3591. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/244edd7e85dc81602b7615cd705545f5-Paper.pdf.
  35. {BREEDS}: Benchmarks for subpopulation shift. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=mQPBmvyAuk.
  36. Hitesh Sapkota and Qi Yu. Adaptive robust evidential optimization for open set detection from imbalanced data. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=3yJ-hcJBqe.
  37. Evidential deep learning to quantify classification uncertainty. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/a981f2b708044d6fb4a71a1463242520-Paper.pdf.
  38. Uncertainty-aware deep classifiers using generative models. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):5620–5627, Apr. 2020.
  39. Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976. ISBN 9780691100425. URL http://www.jstor.org/stable/j.ctv10vm1qb.
  40. Multifaceted uncertainty estimation for label-efficient deep learning. Advances in neural information processing systems, 33:17247–17257, 2020.
  41. Very deep convolutional networks for large-scale image recognition. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.1556.
  42. Evidential uncertainty and diversity guided active learning for scene graph generation. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=xI1ZTtVOtlz.
  43. EfficientNet: Rethinking model scaling for convolutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.  6105–6114. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/tan19a.html.
  44. An evidential classifier based on dempster-shafer theory and deep learning. Neurocomputing, 450:275–293, 2021.
  45. Prior and posterior networks: A survey on evidential deep learning methods for uncertainty estimation. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=xqS8k9E75c.
  46. Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.  595–604, 2015.
  47. Algorithmic learning in a random world, volume 29. Springer, 2005.
  48. Solar: Sinkhorn label refinery for imbalanced partial-label learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022a. URL https://openreview.net/forum?id=wUUutywJY6.
  49. PiCO: Contrastive label disambiguation for partial label learning. In International Conference on Learning Representations, 2022b. URL https://openreview.net/forum?id=EhYjZy6e1gJ.
  50. Dirichlet-based uncertainty calibration for active domain adaptation. In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=4WM4cy42B81.
  51. Instance-dependent partial label learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=AnJUTpZiiWD.
  52. Mutual partial label learning with competitive label noise. In The Eleventh International Conference on Learning Representations, 2023a. URL https://openreview.net/forum?id=EUrxG8IBCrC.
  53. Partial label unsupervised domain adaptation with class-prototype alignment. In The Eleventh International Conference on Learning Representations, 2023b. URL https://openreview.net/forum?id=jpq0qHggw3t.
  54. Evaluating credal classifiers by utility-discounted predictive accuracy. International Journal of Approximate Reasoning, 53(8):1282–1301, 2012. doi: https://doi.org/10.1016/j.ijar.2012.06.022. URL https://www.sciencedirect.com/science/article/pii/S0888613X12000989.
  55. Uncertainty aware semi-supervised learning on graph data. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.  12827–12836. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/968c9b4f09cbb7d7925f38aea3484111-Paper.pdf.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Changbin Li (5 papers)
  2. Kangshuo Li (5 papers)
  3. Yuzhe Ou (3 papers)
  4. Lance M. Kaplan (21 papers)
  5. Audun Jøsang (23 papers)
  6. Jin-Hee Cho (43 papers)
  7. Dong Hyun Jeong (3 papers)
  8. Feng Chen (261 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com