Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constant-Depth Arithmetic Circuits for Linear Algebra Problems (2404.10839v1)

Published 16 Apr 2024 in cs.CC and cs.SC

Abstract: We design polynomial size, constant depth (namely, $\mathsf{AC}0$) arithmetic formulae for the greatest common divisor (GCD) of two polynomials, as well as the related problems of the discriminant, resultant, B\'ezout coefficients, squarefree decomposition, and the inversion of structured matrices like Sylvester and B\'ezout matrices. Our GCD algorithm extends to any number of polynomials. Previously, the best known arithmetic formulae for these problems required super-polynomial size, regardless of depth. These results are based on new algorithmic techniques to compute various symmetric functions in the roots of polynomials, as well as manipulate the multiplicities of these roots, without having access to them. These techniques allow $\mathsf{AC}0$ computation of a large class of linear and polynomial algebra problems, which include the above as special cases. We extend these techniques to problems whose inputs are multivariate polynomials, which are represented by $\mathsf{AC}0$ arithmetic circuits. Here too we solve problems such as computing the GCD and squarefree decomposition in $\mathsf{AC}0$.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com