Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Reconfigurable spin-wave platform based on interplay between nanodots and waveguide in hybrid magnonic crystal (2404.10493v2)

Published 16 Apr 2024 in cond-mat.mes-hall

Abstract: We present a hybrid magnonic crystal composed of a chain of nanodots with strong perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction, positioned above a permalloy waveguide. The micromagnetic study examines two different magnetization states in the nanodots: a single-domain state and an egg-shaped skyrmion state. Due to the dipolar coupling between the dot and the waveguide, a strongly bound hybrid magnetization texture is formed in the system. Our results show complex spin-wave spectra, combining the effects of periodicity, magnetization texture, and hybridization of the propagating waves in the waveguide with the dot/skyrmion modes. The dynamics of the systems are characterized by several key features which include differences in band-gap sizes, the presence of flat bands in the skyrmion state that can form both bound and hybridized states, the latter sometimes leading to the presence of additional non-Bragg band gaps, and a broad frequency range of only waveguide-dominated modes in the single-domain state. Thus, the study shows that the proposed hybrid magnonic crystals have many distinct functionalities, highlighting their reconfigurable potential, magnon-magnon couplings, mode localization, and bound states overlapping with the propagating waves. This opens up potential applications in analog and quantum magnonics, spin-wave filtering, and the establishment of magnonic neural networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. A. V. Chumak, A. A. Serga, and B. Hillebrands, Magnon transistor for all-magnon data processing, Nat. Commun. 5, 4700 (2014).
  2. M.-K. Lee and M. Mochizuki, Reservoir computing with spin waves in a skyrmion crystal, Phys. Rev. Appl. 18, 014074 (2022).
  3. H. Yu, J. Xiao, and H. Schultheiss, Magnetic texture based magnonics, Phys. Rep. 905, 1 (2021).
  4. D. Petti, S. Tacchi, and E. Albisetti, Review on magnonics with engineered spin textures, J. Phys. D: Appl. Phys. 55, 293003 (2022).
  5. A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat. Nanotechnol. 8, 152 (2013).
  6. M. Lonsky and A. Hoffmann, Dynamic excitations of chiral magnetic textures, APL Mater. 8, 100903 (2020).
  7. J. Lan and J. Xiao, Skew scattering and side jump of spin wave across magnetic texture, Phys. Rev. B 103, 054428 (2021).
  8. A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: advances in physics and potential applications, Nat. Rev. Mater. 2, 17031 (2017).
  9. C. H. Marrows and K. Zeissler, Perspective on skyrmion spintronics, Appl. Phys. Lett. 119, 250502 (2021).
  10. S. Azzawi, A. T. Hindmarch, and D. Atkinson, Magnetic damping phenomena in ferromagnetic thin-films and multilayers, J. Phys. D: Appl. Phys. 50, 473001 (2017).
  11. K. Y. Guslienko and Z. V. Gareeva, Gyrotropic skyrmion modes in ultrathin magnetic circular dots, IEEE Magn. Lett. 8, 1 (2017a).
  12. M. Garst, J. Waizner, and D. Grundler, Collective spin excitations of helices and magnetic skyrmions: review and perspectives of magnonics in non-centrosymmetric magnets, J. Phys. D: Appl. Phys. 50, 293002 (2017).
  13. Z. Chen and F. Ma, Skyrmion based magnonic crystals, J. Appl. Phys. 130, 090901 (2021).
  14. J. Chen, J. Hu, and H. Yu, Chiral emission of exchange spin waves by magnetic skyrmions, ACS Nano 15, 4372 (2021).
  15. Á. Papp, W. Porod, and G. Csaba, Nanoscale neural network using non-linear spin-wave interference, Nat. Commun. 12, 6422 (2021).
  16. K. Guslienko and Z. Gareeva, Magnetic skyrmion low frequency dynamics in thin circular dots, J. Magn. Magn. Mater. 442, 176 (2017b).
  17. I. Lemesh and G. S. D. Beach, Twisted domain walls and skyrmions in perpendicularly magnetized multilayers, Phys. Rev. B 98, 104402 (2018).
  18. A. Suna, Perpendicular magnetic ground state of a multilayer film, J. Appl. Phys. 59, 313 (1986).
  19. K. Szulc, Dataset for "Reconfigurable spin-wave platform based on interplay between nanodots and waveguide in hybrid magnonic crystal" (2024), https://doi.org/10.5281/zenodo.10964849 .
  20. P. Krivosik and C. E. Patton, Hamiltonian formulation of nonlinear spin-wave dynamics: Theory and applications, Phys. Rev. B 82, 184428 (2010).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com