Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

A quantum eigenvalue solver based on tensor networks (2404.10223v2)

Published 16 Apr 2024 in quant-ph

Abstract: Electronic ground states are of central importance in chemical simulations, but have remained beyond the reach of efficient classical algorithms except in cases of weak electron correlation or one-dimensional spatial geometry. We introduce a hybrid quantum-classical eigenvalue solver that constructs a wavefunction ansatz from a linear combination of matrix product states in rotated orbital bases, enabling the characterization of strongly correlated ground states with arbitrary spatial geometry. The energy is converged via a gradient-free generalized sweep algorithm based on quantum subspace diagonalization, with a potentially exponential speedup in the off-diagonal matrix element contractions upon translation into compact quantum circuits of linear depth in the number of qubits. Chemical accuracy is attained in numerical experiments for both a stretched water molecule and an octahedral arrangement of hydrogen atoms, achieving substantially better correlation energies compared to a unitary coupled-cluster benchmark, with orders of magnitude reductions in quantum resource estimates and a surprisingly high tolerance to shot noise. This proof-of-concept study suggests a promising new avenue for scaling up simulations of strongly correlated chemical systems on near-term quantum hardware.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. D. R. Hartree, The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods, Mathematical Proceedings of the Cambridge Philosophical Society 24, 89–110 (1928).
  2. R. Penrose, Applications of negative dimensional tensors, in Combinatorial Mathematics and its Applications, edited by D. J. A. Welsh (Academic Press, New York, 1971) pp. 221–244.
  3. J. C. Bridgeman and C. T. Chubb, Hand-waving and interpretive dance: an introductory course on tensor networks, Journal of Physics A: Mathematical and Theoretical 50, 223001 (2017).
  4. S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69, 2863 (1992).
  5. S. R. White and R. L. Martin, Ab Initio Quantum Chemistry using the Density Matrix Renormalization Group, The Journal of Chemical Physics 110, 4127 (1999), arXiv: cond-mat/9808118.
  6. G. K.-L. Chan and S. Sharma, The Density Matrix Renormalization Group in Quantum Chemistry, Annual Review of Physical Chemistry 62, 465 (2011).
  7. A. Baiardi and M. Reiher, The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges, The Journal of Chemical Physics 152, 040903 (2020).
  8. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Reviews of Modern Physics 82, 277–306 (2010).
  9. A. Klümper, A. Schadschneider, and J. Zittartz, Matrix product ground states for one-dimensional spin-1 quantum antiferromagnets, Europhysics Letters (EPL) 24, 293–297 (1993).
  10. S. Sharma and G. K.-L. Chan, Spin-adapted density matrix renormalization group algorithms for quantum chemistry, The Journal of Chemical Physics 136, 124121 (2012), publisher: American Institute of Physics.
  11. F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions (2004), arXiv:cond-mat/0407066 [cond-mat.str-el] .
  12. M. P. Zaletel and F. Pollmann, Isometric tensor network states in two dimensions, Phys. Rev. Lett. 124, 037201 (2020).
  13. R. P. Feynman, Quantum mechanical computers, Foundations of Physics 16, 507 (1986).
  14. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  15. A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem (1995), arXiv:quant-ph/9511026 [quant-ph] .
  16. I. H. Kim and B. Swingle, Robust entanglement renormalization on a noisy quantum computer, arXiv:1711.07500 [cond-mat, physics:quant-ph]  (2017), arXiv: 1711.07500.
  17. J. Borregaard, M. Christandl, and D. Stilck França, Noise-robust exploration of many-body quantum states on near-term quantum devices, npj Quantum Information 7, 1 (2021), number: 1 Publisher: Nature Publishing Group.
  18. C. L. Cortes and S. K. Gray, Quantum krylov subspace algorithms for ground- and excited-state energy estimation, Phys. Rev. A 105, 022417 (2022).
  19. I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing 33, 2295 (2011).
  20. G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Physical Review Letters 91, 10.1103/physrevlett.91.147902 (2003).
  21. F. Verstraete, J. I. Cirac, and J. I. Latorre, Quantum circuits for strongly correlated quantum systems, Phys. Rev. A 79, 032316 (2009).
  22. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching (Addison-Wesley, 1998).
  23. E. H. Friend, Sorting on electronic computer systems, J. ACM 3, 134–168 (1956).
  24. D. Thouless, Stability conditions and nuclear rotations in the hartree-fock theory, Nuclear Physics 21, 225 (1960).
  25. P. Jordan and E. Wigner, Über das paulische äquivalenzverbot, Zeitschrift für Physik 47, 631 (1928).
  26. E. J. Sundstrom and M. Head-Gordon, Non-orthogonal configuration interaction for the calculation of multielectron excited states, The Journal of Chemical Physics 140, 114103 (2014).
  27. A. J. W. Thom and M. Head-Gordon, Hartree–Fock solutions as a quasidiabatic basis for nonorthogonal configuration interaction, The Journal of Chemical Physics 131, 124113 (2009).
  28. D. Zgid and M. Nooijen, The density matrix renormalization group self-consistent field method: Orbital optimization with the density matrix renormalization group method in the active space, The Journal of Chemical Physics 128, 144116 (2008).
  29. E. N. Epperly, L. Lin, and Y. Nakatsukasa, A theory of quantum subspace diagonalization (2021).
  30. S. Polla, G.-L. R. Anselmetti, and T. E. O’Brien, Optimizing the information extracted by a single qubit measurement, Physical Review A 108, 10.1103/physreva.108.012403 (2023).
  31. D. Wecker, M. B. Hastings, and M. Troyer, Progress towards practical quantum variational algorithms, Phys. Rev. A 92, 042303 (2015).
  32. S.-J. Ran, Encoding of matrix product states into quantum circuits of one- and two-qubit gates, Physical Review A 101, 032310 (2020).
  33. V. Shende, S. Bullock, and I. Markov, Synthesis of quantum-logic circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1000–1010 (2006).
  34. M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022).
  35. Tnqe-julia, https://github.com/oskar-leimkuhler/TNQE-Julia.git.
  36. S. Singh, R. N. C. Pfeifer, and G. Vidal, Tensor network states and algorithms in the presence of a global u(1) symmetry, Phys. Rev. B 83, 115125 (2011).
  37. S. Singh and G. Vidal, Tensor network states and algorithms in the presence of a global su(2) symmetry, Phys. Rev. B 86, 195114 (2012).
  38. Q. Sun, Libcint: An efficient general integral library for gaussian basis functions, Journal of Computational Chemistry 36, 1664 (2015).
  39. J. Rissler, R. M. Noack, and S. R. White, Measuring orbital interaction using quantum information theory, Chemical Physics 323, 519–531 (2006).
  40. D. C. Liu and J. Nocedal, On the limited memory bfgs method for large scale optimization, Mathematical Programming 45, 503 (1989).
  41. A. F. Izmaylov, R. A. Lang, and T.-C. Yen, Analytic gradients in variational quantum algorithms: Algebraic extensions of the parameter-shift rule to general unitary transformations, Phys. Rev. A 104, 062443 (2021).
  42. Z. Li and G. K.-L. Chan, Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems, Journal of Chemical Theory and Computation 13, 2681 (2017), publisher: American Chemical Society.
  43. Y. S. Yordanov, D. R. M. Arvidsson-Shukur, and C. H. W. Barnes, Efficient quantum circuits for quantum computational chemistry, Phys. Rev. A 102, 062612 (2020).
  44. M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70, 1039 (1998).
  45. T. Begušić, J. Gray, and G. K.-L. Chan, Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance, Science Advances 10, eadk4321 (2024).
  46. S. Shin, Y. S. Teo, and H. Jeong, Dequantizing quantum machine learning models using tensor networks (2023), arXiv:2307.06937 [quant-ph] .
  47. S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor optimization in the tensor train format, SIAM Journal on Scientific Computing 34, A683 (2012).
  48. S. Wouters and D. Van Neck, The density matrix renormalization group for ab initio quantum chemistry, The European Physical Journal D 68, 10.1140/epjd/e2014-50500-1 (2014).
  49. F. Zickert, Hands-On Quantum Machine Learning With Python: Volume 1: Get Started (Amazon Digital Services LLC - KDP Print US, 2021).
  50. H.-R. Wei and Y.-M. Di, Decomposition of orthogonal matrix and synthesis of two-qubit and three-qubit orthogonal gates (2012), arXiv:1203.0722 [quant-ph] .
  51. D. Gottesman, Class of quantum error-correcting codes saturating the quantum hamming bound, Phys. Rev. A 54, 1862 (1996).
  52. S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A 70, 10.1103/physreva.70.052328 (2004).
  53. E. M. Stoudenmire and S. R. White, Minimally entangled typical thermal state algorithms, New Journal of Physics 12, 055026 (2010).
  54. A. J. Ferris and G. Vidal, Perfect sampling with unitary tensor networks, Phys. Rev. B 85, 165146 (2012).
  55. A. T. Amos, G. G. Hall, and H. Jones, Single determinant wave functions, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 263, 483 (1961).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com