Simulating electronic structure on bosonic quantum computers (2404.10222v5)
Abstract: Quantum harmonic oscillators, or qumodes, provide a promising and versatile framework for quantum computing. Unlike qubits, which are limited to two discrete levels, qumodes have an infinite-dimensional Hilbert space, making them well-suited for a wide range of quantum simulations. In this work, we focus on the molecular electronic structure problem. We propose an approach to map the electronic Hamiltonian into a qumode bosonic problem that can be solved on bosonic quantum devices using the variational quantum eigensolver (VQE). Our approach is demonstrated through the computation of ground potential energy surfaces for benchmark model systems, including H$_2$ and the linear H$_4$ molecule. The preparation of trial qumode states and the computation of expectation values leverage universal ansatzes based on the echoed conditional displacement (ECD), or the selective number-dependent arbitrary phase (SNAP) operations. These techniques are compatible with circuit quantum electrodynamics (cQED) platforms, where microwave resonators coupled to superconducting transmon qubits can offer an efficient hardware realization. This work establishes a new pathway for simulating many-fermion systems, highlighting the potential of hybrid qubit-qumode quantum devices in advancing quantum computational chemistry.
- Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 2019, 10
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer-Verlag, 1980
- Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; Dover Publications, 1996
- Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic Structure Theory; John Wiley and Sons, 2000
- Shang, Z.-X.; Zhong, H.-S.; Zhang, Y.-K.; Yu, C.-C.; Yuan, X.; Lu, C.-Y.; Pan, J.-W.; Chen, M.-C. Boson sampling enhanced quantum chemistry. arXiv preprint arXiv:2403.16698 2024,
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 2014,
- Blekos, K.; Brand, D.; Ceschini, A.; Chou, C.-H.; Li, R.-H.; Pandya, K.; Summer, A. A review on quantum approximate optimization algorithm and its variants. arXiv preprint arXiv:2306.09198 2023,
- Stavenger, T. J.; Crane, E.; Smith, K. C.; Kang, C. T.; Girvin, S. M.; Wiebe, N. C2QA-bosonic qiskit. 2022 IEEE High Performance Extreme Computing Conference (HPEC). 2022; pp 1–8
- Fösel, T.; Krastanov, S.; Marquardt, F.; Jiang, L. Efficient cavity control with SNAP gates. arXiv preprint arXiv:2004.14256 2020,
- You, X.; Lu, Y.; Kim, T.; Kurkcuoglu, D. M.; Zhu, S.; van Zanten, D.; Roy, T.; Lu, Y.; Chakram, S.; Grassellino, A.; Romanenko, A.; Koch, J.; Zorzetti, S. Crosstalk-Robust Quantum Control in Multimode Bosonic Systems. arXiv preprint arXiv:2403.00275 2024,
- Arrazola, J. M.; Jahangiri, S.; Delgado, A.; Ceroni, J.; Izaac, J.; Száva, A.; Azad, U.; Lang, R. A.; Niu, Z.; Di Matteo, O., et al. Differentiable quantum computational chemistry with PennyLane. arXiv preprint arXiv:2111.09967 2021,