Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulating Chemistry on Bosonic Quantum Devices (2404.10214v3)

Published 16 Apr 2024 in quant-ph

Abstract: Bosonic quantum devices offer a novel approach to realize quantum computations, where the quantum two-level system (qubit) is replaced with the quantum (an)harmonic oscillator (qumode) as the fundamental building block of the quantum simulator. The simulation of chemical structure and dynamics can then be achieved by representing or mapping the system Hamiltonians in terms of bosonic operators. In this perspective, we review recent progress and future potential of using bosonic quantum devices for addressing a wide range of challenging chemical problems, including the calculation of molecular vibronic spectra, the simulation of gas-phase and solution-phase adiabatic and nonadiabatic chemical dynamics, the efficient solution of molecular graph theory problems, and the calculations of electronic structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Feynman, R. P. Feynman and computation; CRC Press, 2018; pp 133–153
  2. Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 2019, 10
  3. Chu, Y.; Gröblacher, S. A perspective on hybrid quantum opto- and electromechanical systems. Appl. Phys. Lett. 2020, 117
  4. Stavenger, T. J.; Crane, E.; Smith, K. C.; Kang, C. T.; Girvin, S. M.; Wiebe, N. C2QA-bosonic qiskit. 2022 IEEE High Performance Extreme Computing Conference (HPEC). 2022; pp 1–8
  5. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to Spectroscopy; Brooks/Cole, 2009
  6. Dierksen, M.; Grimme, S. The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of “Exact” Hartree–Fock exchange. J. Phys. Chem. A 2004, 108, 10225
  7. Frattini, N. E.; Cortiñas, R. G.; Venkatraman, J.; Xiao, X.; Su, Q.; Lei, C. U.; Chapman, B. J.; Joshi, V. R.; Girvin, S.; Schoelkopf, R. J. The squeezed Kerr oscillator: Spectral kissing and phase-flip robustness. arXiv preprint arXiv:2209.03934 2022,
  8. Abramavicius, D.; Mukamel, S. Exciton dynamics in chromophore aggregates with correlated environment fluctuations. J. Chem. Phys. 2011, 134
  9. Li, X.; Lyu, S.-X.; Wang, Y.; Xu, R.-X.; Zheng, X.; Yan, Y. Towards Quantum Simulation of Non-Markovian Open Quantum Dynamics: A Universal and Compact Theory. 2024,
  10. Seneviratne, A.; Walters, P. L.; Wang, F. Exact Non-Markovian Quantum Dynamics on the NISQ Device Using Kraus Operators. ACS omega 2024,
  11. Kelly, A.; Montoya-Castillo, A.; Wang, L.; Markland, T. E. Generalized quantum master equations in and out of equilibrium: When can one win? J. Chem. Phys. 2016, 144
  12. Montoya-Castillo, A.; Reichman, D. R. Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics. J. Chem. Phys. 2016, 144
  13. Montoya-Castillo, A.; Reichman, D. R. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions. J. Chem. Phys. 2017, 146
  14. Pfalzgraff, W. C.; Montoya-Castillo, A.; Kelly, A.; Markland, T. E. Efficient construction of generalized master equation memory kernels for multi-state systems from nonadiabatic quantum-classical dynamics. J. Chem. Phys. 2019, 150
  15. Mulvihill, E.; Gao, X.; Liu, Y.; Schubert, A.; Dunietz, B. D.; Geva, E. Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics. J. Chem. Phys. 2019, 151
  16. Mulvihill, E.; Schubert, A.; Sun, X.; Dunietz, B. D.; Geva, E. A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation. J. Chem. Phys. 2019, 150
  17. Ng, N.; Limmer, D. T.; Rabani, E. Nonuniqueness of generalized quantum master equations for a single observable. J. Chem. Phys. 2021, 155
  18. Mulvihill, E.; Lenn, K. M.; Gao, X.; Schubert, A.; Dunietz, B. D.; Geva, E. Simulating energy transfer dynamics in the Fenna–Matthews–Olson complex via the modified generalized quantum master equation. J. Chem. Phys. 2021, 154
  19. Sayer, T.; Montoya-Castillo, A. Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra. J. Chem. Phys. 2024, 160
  20. Tanimura, Y. Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM). J. Chem. Phys. 2020, 153, 020901
  21. Venkatraman, J.; Cortiñas, R. G.; Frattini, N. E.; Xiao, X.; Devoret, M. H. A driven quantum superconducting circuit with multiple tunable degeneracies. arXiv preprint arXiv:2211.04605 2023,
  22. Hein, M.; Dür, W.; Eisert, J.; Raussendorf, R.; den Nest, M. V.; Briegel, H.-J. Entanglement in Graph States and Its Applications. 2006
  23. Lyu, N.; Bergold, P.; Soley, M.; Wang, C.; Batista, V. S. Holographic Gaussian Boson Sampling with Matrix Product States on 3D cQED Processors. arXiv:2403.16810 2024,
  24. Parasa, V.; Perkowski, M. Quantum Phase Estimation Using Multivalued Logic. 2011 41st IEEE International Symposium on Multiple-Valued Logic. 2011; pp 224–229
  25. Fox, A. Quantum Optics: An Introduction; Oxford Master Series in Physics; OUP Oxford, 2006
  26. Singkanipa, P.; Kasatkin, V.; Zhou, Z.; Quiroz, G.; Lidar, D. A. Demonstration of Algorithmic Quantum Speedup for an Abelian Hidden Subgroup Problem. arXiv preprint arXiv:2401.07934 2024,
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com