Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of a finite element DtN method for scattering resonances of sound hard obstacles (2404.09300v1)

Published 14 Apr 2024 in math.NA and cs.NA

Abstract: Scattering resonances have important applications in many areas of science and engineering. They are the replacement of discrete spectral data for problems on non-compact domains. In this paper, we consider the computation of scattering resonances defined on the exterior to a compact sound hard obstacle. The resonances are the eigenvalues of a holomorphic Fredholm operator function. We truncate the unbounded domain and impose the Dirichlet-to-Neumann (DtN) mapping. The problem is then discretized using the linear Lagrange element. Convergence of the resonances is proved using the abstract approximation theory for holomorphic Fredholm operator functions. The discretization leads to nonlinear algebraic eigenvalue problems, which are solved by the recently developed parallel spectral indicator methods. Numerical examples are presented for validation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

We haven't generated a summary for this paper yet.