Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing scattering resonances of rough obstacles (2402.00846v1)

Published 1 Feb 2024 in math.NA, cs.NA, math.AP, and math.SP

Abstract: This paper is concerned with the numerical computation of scattering resonances of the Laplacian for Dirichlet obstacles with rough boundary. We prove that under mild geometric assumptions on the obstacle there exists an algorithm whose output is guaranteed to converge to the set of resonances of the problem. The result is formulated using the framework of Solvability Complexity Indices. The proof is constructive and provides an efficient numerical method. The algorithm is based on a combination of a Glazman decomposition, a polygonal approximation of the obstacle and a finite element method. Our result applies in particular to obstacles with fractal boundary, such as the Koch Snowflake and certain filled Julia sets. Finally, we provide numerical experiments in MATLAB for a range of interesting obstacle domains.

Citations (1)

Summary

We haven't generated a summary for this paper yet.