Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Model Predictive Control Scheme for Flight Scheduling and Energy Management of Electric Aviation Networks (2404.09282v1)

Published 14 Apr 2024 in eess.SY and cs.SY

Abstract: This paper presents a Model Predictive Control (MPC) scheme for flight scheduling and energy management of electric aviation networks, where electric aircraft transport passengers between electrified airports equipped with sustainable energy sources and battery storage, with the goal of minimizing grid dependency. Specifically, we first model the aircraft flight and charge scheduling problem jointly with the airport energy management problem, explicitly accounting for local weather forecasts. Second, we frame the minimum-grid-energy operational problem as a mixed-integer linear program and solve it in a receding horizon fashion, where the route assignment and charging decisions of each aircraft can be dynamically reassigned to mitigate disruptions. We showcase the proposed MPC scheme on real-world data taken from conventional flights and weather conditions in the Dutch Leeward Antilles. Our results show that MPC can effectively guarantee operation of the network by efficiently re-assigning flights and rescheduling aircraft charging, whilst maximizing the efficiency of the on-site energy systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. K. Antcliff, N. Borer, S. Sartorius, P. Saleh, R. Rose, M. Gariel, J. Oldham, C. Courtin, M. Bradley, S. Roy, B. Lynch, A. Guiang, P. Stith, D. Sun, S. Ying, M. Patterson, V. Schultz, R. Ganzarski, K. Noertker, C. Combs, and R. Ouellette, “Regional air mobility: Leveraging our national investments to energize the american travel experience,” National Aeronautics and Space Administration, Tech. Rep., 2021.
  2. C. Barnhart, N. L. Boland, L. W. Clarke, E. L. Johnson, G. L. Nemhauser, and R. G. Shenoi, “Flight string models for aircraft fleeting and routing,” Transportation Science, vol. 32, no. 3, pp. 208–220, 1998. [Online]. Available: https://doi.org/10.1287/trsc.32.3.208
  3. H. Gürkan, S. Gürel, and M. S. Aktürk, “An integrated approach for airline scheduling, aircraft fleeting and routing with cruise speed control,” Transportation Research Part C: Emerging Technologies, 2016.
  4. C. Barnhart and A. Cohn, “Airline schedule planning: Accomplishments and opportunities,” Manufacturing and Service Operations Management, vol. 6, no. 1, p. 3 – 22, 2004, cited by: 85; All Open Access, Green Open Access. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-25144453450&doi=10.1287%2fmsom.1030.0018&partnerID=40&md5=f3190fbcc160fdff28de4c7f0433ea62
  5. C. A. Hane, C. Barnhart, E. L. Johnson, R. E. Marsten, G. L. Nemhauser, and G. Sigismondi, “The fleet assignment problem: solving a large-scale integer program,” Mathematical Programming, vol. 70, pp. 211–232, 1995.
  6. K. Roy and C. J. Tomlin, “Solving the aircraft routing problem using network flow algorithms,” in Proc. of the American Control Conference, 2007.
  7. F. M. Zeghal, M. Haouari, H. D. Sherali, and N. Aissaoui, “Flexible aircraft fleeting and routing at TunisAir,” Journal of the Operational Research Society, vol. 62, 2011.
  8. C. Y. Justin, A. P. Payan, and D. N. Mavris, “Integrated fleet assignment and scheduling for environmentally friendly electrified regional air mobility,” Transportation Research Part C: Emerging Technologies, Mar. 2022.
  9. A. Kinene, S. Birolini, M. Cattaneo, and T. Andersson Granberg, “Electric aircraft charging network design for regional routes: A novel mathematical formulation and kernel search heuristic,” European Journal of Operational Research, 2023.
  10. M. Mitici, M. Rereira, and F. Oliveiro, “Electric flight scheduling with battery-charging and battery-swapping opportunities,” EURO Journal on Transportation and Logistics, vol. 11, 2022.
  11. L. Trainelli, F. Salucci, C. E. D. Riboldi, A. Rolando, and F. Bigoni, “Optimal sizing and operation of airport infrastructures in support of electric-powered aviation,” Aerospace, vol. 8, 2021.
  12. F. Vehlhaber and M. Salazar, “Airport infrastructure sizing for a regional electric aviation network,” in 34th Congress of the International Council of the Aeronautical Sciences, 2024, under Review.
  13. N. J. van Amstel, “Optimizing the Energy and Charging Infrastructure Costs for Regional Electric Aircraft Operations: A case study in the Dutch Caribbean,” Master’s thesis, Delft University of Technology, 2023.
  14. F. Vehlhaber and M. Salazar, “Electric aircraft assignment, routing, and charge scheduling considering the availability of renewable energy,” IEEE Control Systems Letters, vol. 7, pp. 3669–3674, 2023, available online at http://arxiv.org/pdf/2309.09793v1.
  15. M. Tsao, D. Milojevic, C. Ruch, M. Salazar, E. Frazzoli, and M. Pavone, “Model predictive control of ride-sharing autonomous mobility on demand systems,” in Proc. IEEE Conf. on Robotics and Automation, 2019.
  16. G. Cavone, T. van den Boom, L. Blenkers, M. Dotoli, C. Seatzu, and B. De Schutter, “An mpc-based rescheduling algorithm for disruptions and disturbances in large-scale railway networks,” IEEE Transactions on Automation Sciences and Engineering, vol. 19, no. 1, pp. 99–112, 2022.
  17. M. Rinaldi, E. Picarelli, G. Laskaris, A. d’Ariano, and F. Viti, “Mixed hybrid and electric bus dynamic fleet management in urban networks: a model predictive control approach,” in 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2019, pp. 1–8.
  18. C. Le Floch, F. Di Meglio, and S. Moura, “Optimal charging of vehicle-to-grid fleets via pde aggregation techniques,” in Proc. of the American Control Conference, 2015.
  19. Y. Zheng, Y. Song, D. J. Hill, and K. Meng, “Online Distributed MPC-Based Optimal Scheduling for EV Charging Stations in Distribution Systems,” IEEE Transactions on Industrial Informatics, vol. 15, no. 2, 2019.
  20. I. Kleinbekman, M. Mitici, and P. Wei, “Rolling-horizon electric vertical takeoff and landing arrival scheduling for on-demand urban air mobility,” Journal of Aerospace Information Systems, vol. 17, pp. 150–159, 2019.
  21. A. Richards and J. How, “Mixed-integer programming for control,” in Proc. of the American Control Conference, 2005.
  22. C. C. Holt, “Forecasting seasonals and trends by exponentially weighted moving averages,” International Journal of Forecasting, vol. 20, no. 1, pp. 5–10, 2004.
  23. (2024) Sunshine and radiation - sunshine and radiation at a 10 minute interval. Royal Netherlands Meteorological Institute. [Online]. Available: https://dataplatform.knmi.nl/
  24. flightradar24. (2023) Flightradar24: Live flight tracker – real-time flight tracker map. [Online]. Available: https://www.flightradar24.com
  25. J. Löfberg, “YALMIP : A toolbox for modeling and optimization in MATLAB,” in IEEE Int. Symp. on Computer Aided Control Systems Design, 2004.
  26. Gurobi Optimization, LLC. (2021) Gurobi optimizer reference manual. Available online at http://www.gurobi.com.
  27. Eviation. Alice. Accessed on August 29, 2023. [Online]. Available: https://www.eviation.com/aircraft/
  28. T. Bærheim, J. J. Lamb, J. K. Nøland, and O. S. Burheim, “Potential and Limitations of Battery-Powered All-Electric Regional Flights–A Norwegian Case Study,” IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp. 1809–1825, Mar. 2023.
  29. F. Paparella, L. Pedroso, T. Hofman, and M. Salazar, “A time-invariant network flow model for ride-pooling in mobility-on-demand systems,” IEEE Transactions on Control of Network Systems, 2024, under Review.

Summary

We haven't generated a summary for this paper yet.