Quantum subspace expansion in the presence of hardware noise (2404.09132v1)
Abstract: Finding ground state energies on current quantum processing units (QPUs) using algorithms like the variational quantum eigensolver (VQE) continues to pose challenges. Hardware noise severely affects both the expressivity and trainability of parametrized quantum circuits, limiting them to shallow depths in practice. Here, we demonstrate that both issues can be addressed by synergistically integrating VQE with a quantum subspace expansion, allowing for an optimal balance between quantum and classical computing capabilities and costs. We perform a systematic benchmark analysis of the iterative quantum-assisted eigensolver of [K. Bharti and T. Haug, Phys. Rev. A {\bf 104}, L050401 (2021)] in the presence of hardware noise. We determine ground state energies of 1D and 2D mixed-field Ising spin models on noisy simulators and on the IBM QPUs ibmq_quito (5 qubits) and ibmq_guadalupe (16 qubits). To maximize accuracy, we propose a suitable criterion to select the subspace basis vectors according to the trace of the noisy overlap matrix. Finally, we show how to systematically approach the exact solution by performing controlled quantum error mitigation based on probabilistic error reduction on the noisy backend fake_guadalupe.
- H. Lamm and S. Lawrence, Simulation of nonequilibrium dynamics on a quantum computer, Phys. Rev. Lett. 121, 170501 (2018).
- P. Frey and S. Rachel, Realization of a discrete time crystal on 57 qubits of a quantum computer, Science Advances 8, eabm7652 (2022).
- N. H. Stair, R. Huang, and F. A. Evangelista, A multireference quantum krylov algorithm for strongly correlated electrons, J. Chem. Theory Comput. 16, 2236 (2020).
- R. M. Parrish and P. L. McMahon, Quantum Filter Diagonalization: Quantum Eigendecomposition without Full Quantum Phase Estimation, arXiv:1909.08925 10.48550/arXiv.1909.08925 (2019).
- K. Seki and S. Yunoki, Quantum power method by a superposition of time-evolved states, PRX Quantum 2, 010333 (2021).
- C. L. Cortes and S. K. Gray, Quantum krylov subspace algorithms for ground- and excited-state energy estimation, Phys. Rev. A 105, 022417 (2022).
- C. L. Cortes, A. E. DePrince, and S. K. Gray, Fast-forwarding quantum simulation with real-time quantum krylov subspace algorithms, Phys. Rev. A 106, 042409 (2022).
- K. Bharti and T. Haug, Iterative quantum-assisted eigensolver, Phys. Rev. A 104, L050401 (2021).
- M. Kubale, Graph Colorings, Contemporary mathematics (American Mathematical Society) v. 352 (American Mathematical Society, 2004).
- H. W. J. Blöte and Y. Deng, Cluster Monte Carlo simulation of the transverse Ising model, Phys. Rev. E 66, 066110 (2002).
- E. van den Berg, Z. K. Minev, and K. Temme, Model-free readout-error mitigation for quantum expectation values, Phys. Rev. A 105, 032620 (2022).
- K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
- S. T. Flammia and J. J. Wallman, Efficient estimation of Pauli channels, ACM Transactions on Quantum Computing 1, 1 (2020).
- A. Mari, N. Shammah, and W. J. Zeng, Extending quantum probabilistic error cancellation by noise scaling, Phys. Rev. A 104, 052607 (2021).
- B. McDonough, benmcdonough20/autonomouspertools: v0.2.0-alpha (2022).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.