Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selection of Time Headway in Connected and Autonomous Vehicle Platoons under Noisy V2V Communication (2404.08889v1)

Published 13 Apr 2024 in eess.SY and cs.SY

Abstract: In this paper, we investigate the selection of time headway to ensure robust string stability in connected and autonomous vehicle platoons in the presence of signal noise in Vehicle-to-Vehicle (V2V) communication. In particular, we consider the effect of noise in communicated vehicle acceleration from the predecessor vehicle to the follower vehicle on the selection of the time headway in predecessor-follower type vehicle platooning with a Constant Time Headway Policy (CTHP). Employing a CTHP based control law for each vehicle that utilizes on-board sensors for measurement of position and velocity of the predecessor vehicle and wireless communication network for obtaining the acceleration of the predecessor vehicle, we investigate how time headway is affected by communicated signal noise. We derive constraints on the CTHP controller gains for predecessor acceleration, velocity error and spacing error and a lower bound on the time headway which will ensure robust string stability of the platoon against signal noise. We provide comparative numerical simulations on an example to illustrate the main result.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. G. Ma, P. R. Pagilla, and S. Darbha, “The effect of signal noise and latency in communicated acceleration on time headway in vehicle platooning,” in 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2023, pp. 4532–4537.
  2. A. Matin and H. Dia, “Impacts of connected and automated vehicles on road safety and efficiency: A systematic literature review,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, pp. 2705–2736, 2023.
  3. M. Garg and M. Bouroche, “Can connected autonomous vehicles improve mixed traffic safety without compromising efficiency in realistic scenarios?” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 6, pp. 6674–6689, 2023.
  4. D. Swaroop and J. K. Hedrick, “Constant Spacing Strategies for Platooning in Automated Highway Systems,” Journal of Dynamic Systems, Measurement, and Control, vol. 121, no. 3, pp. 462–470, 09 1999.
  5. J. B. Kenney, “Dedicated short-range communications (DSRC) standards in the United States,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–1182, 2011.
  6. R. Molina-Masegosa and J. Gozalvez, “System level evaluation of lte-v2v mode 4 communications and its distributed scheduling,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 2017, pp. 1–5.
  7. M. H. C. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-Perales, T. Şahin, and A. Kousaridas, “A tutorial on 5G NR V2X communications,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1972–2026, 2021.
  8. A. Vinel, L. Lan, and N. Lyamin, “Vehicle-to-vehicle communication in c-acc/platooning scenarios,” IEEE Communications Magazine, vol. 53, no. 8, pp. 192–197, 2015.
  9. S. Darbha, S. Konduri, and P. R. Pagilla, “Benefits of V2V communication for autonomous and connected vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 5, pp. 1954–1963, 2018.
  10. J. Ploeg, D. P. Shukla, N. van de Wouw, and H. Nijmeijer, “Controller synthesis for string stability of vehicle platoons,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 2, pp. 854–865, 2014.
  11. G. F. Silva, A. Donaire, A. McFadyen, and J. J. Ford, “String stable integral control design for vehicle platoons with disturbances,” Automatica, vol. 127, p. 109542, 2021.
  12. R. Rajamani and C. Zhu, “Semi-autonomous adaptive cruise control systems,” IEEE Transactions on Vehicular Technology, vol. 51, no. 5, pp. 1186–1192, 2002.
  13. J. Jiang, A. Astolfi, and T. Parisini, “Robust traffic wave damping via shared control,” Transportation Research Part C: Emerging Technologies, vol. 128, p. 103110, 2021.
  14. W. Scholte, P. Zegelaar, and H. Nijmeijer, “A control strategy for merging a single vehicle into a platoon at highway on-ramps,” Transportation Research Part C: Emerging Technologies, vol. 136, p. 103511, 2022.
  15. J. Shen, E. K. H. Kammara, and L. Du, “Fully distributed optimization-based cav platooning control under linear vehicle dynamics,” Transportation Science, vol. 56, no. 2, pp. 381–403, 2022.
  16. S. Darbha, S. Konduri, and P. R. Pagilla, “Vehicle platooning with constant spacing strategies and multiple vehicle look ahead information,” IET Intelligent Transport Systems, vol. 14, no. 6, pp. 589–600, 2020.
  17. Y. Bian, Y. Zheng, W. Ren, S. E. Li, J. Wang, and K. Li, “Reducing time headway for platooning of connected vehicles via v2v communication,” Transportation Research Part C: Emerging Technologies, vol. 102, pp. 87–105, 2019.
  18. G. Guo, J. Kang, H. Lei, and D. Li, “Finite-time stabilization of a collection of connected vehicles subject to communication interruptions,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 10 627–10 635, 2022.
  19. G. J. L. Naus, R. P. A. Vugts, J. Ploeg, M. J. G. van de Molengraft, and M. Steinbuch, “String-stable cacc design and experimental validation: A frequency-domain approach,” IEEE Transactions on Vehicular Technology, vol. 59, no. 9, pp. 4268–4279, 2010.
  20. J. I. Ge and G. Orosz, “Connected cruise control among human-driven vehicles: Experiment-based parameter estimation and optimal control design,” Transportation Research Part C: Emerging Technologies, vol. 95, pp. 445–459, 2018.
  21. L. Jin, M. Čičić, K. H. Johansson, and S. Amin, “Analysis and design of vehicle platooning operations on mixed-traffic highways,” IEEE Transactions on Automatic Control, vol. 66, no. 10, pp. 4715–4730, 2021.
  22. S. Gong and L. Du, “Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles,” Transportation Research Part B: Methodological, vol. 116, pp. 25–61, 2018.
  23. J. Lan, D. Zhao, and D. Tian, “Data-driven robust predictive control for mixed vehicle platoons using noisy measurement,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–11, 2021.
  24. J. Ploeg, N. van de Wouw, and H. Nijmeijer, “Lp string stability of cascaded systems: Application to vehicle platooning,” IEEE Transactions on Control Systems Technology, vol. 22, no. 2, pp. 786–793, 2014.
  25. B. Besselink and K. H. Johansson, “String stability and a delay-based spacing policy for vehicle platoons subject to disturbances,” IEEE Transactions on Automatic Control, vol. 62, no. 9, pp. 4376–4391, 2017.
  26. Z. Li, B. Hu, M. Li, and G. Luo, “String stability analysis for vehicle platooning under unreliable communication links with event-triggered strategy,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2152–2164, 2019.
  27. R. A. Biroon, Z. A. Biron, and P. Pisu, “False data injection attack in a platoon of cacc: Real-time detection and isolation with a pde approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8692–8703, 2022.
  28. V. Vegamoor, S. Rathinam, and S. Darbha, “String stability of connected vehicle platoons under lossy V2V communication,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8834–8845, 2022.
  29. M. Hu, X. Wang, Y. Bian, D. Cao, and H. Wang, “Disturbance observer-based cooperative control of vehicle platoons subject to mismatched disturbance,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 4, pp. 2748–2758, 2023.
  30. Y. Zhu, Y. Li, H. Zhu, W. Hua, G. Huang, S. Yu, S. E. Li, and X. Gao, “Joint sliding-mode controller and observer for vehicle platoon subject to disturbance and acceleration failure of neighboring vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 3, pp. 2345–2357, 2023.

Summary

We haven't generated a summary for this paper yet.