Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Lp string stability analysis in predecessor-following platoons under packet losses (2403.11043v1)

Published 16 Mar 2024 in eess.SY and cs.SY

Abstract: In this paper, we study (homogeneous) predecessor-following platoons in which the vehicle-to-vehicle (V2V) communications are affected by random packet losses. We model the overall platoon as a stochastic hybrid system and analyse its string stability via a small-gain approach. For nonlinear platoons, we illustrate how the different elements of the platoon have an impact on string stability, such as platoon topology and vehicle scheduling. For linear time-invariant platoons, we provide an explicit string stability condition that illustrates the interplay between the channel success probability, transmission rate, and time headway constant. Lastly, we illustrate our results by numerical simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. M. Muratori, J. Holden, M. Lammert, A. Duran, S. Young, and J. Gonder, “Potentials for platooning in US highway freight transport,” tech. rep., National Renewable Energy Lab.(NREL), Golden, CO (United States), 2017.
  2. Z. Wang, Y. Bian, S. E. Shladover, G. Wu, S. E. Li, and M. J. Barth, “A survey on cooperative longitudinal motion control of multiple connected and automated vehicles,” IEEE Intelligent Transportation Systems Magazine, vol. 12, no. 1, pp. 4–24, 2019.
  3. P. Seiler, A. Pant, and K. Hedrick, “Disturbance propagaton in vehicle strings,” IEEE Transactions on Automatic Control, vol. 49, no. 10, pp. 1835–1841, 2004.
  4. S. E. Li, Y. Zheng, K. Li, L.-Y. Wang, and H. Zhang, “Platoon control of connected vehicles from a networked control perspective: Literature review, component modeling, and controller synthesis,” IEEE Transactions on Vehicular Technology, 2017.
  5. W. Levine and M. Athans, “On the optimal error regulation of a string of moving vehicles,” IEEE Transactions on Automatic Control, vol. 11, no. 3, pp. 355 – 361, 1966.
  6. D. Swaroop and J. Hedrick, “String stability of interconnected systems,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 349 –357, 1996.
  7. R. H. Middleton and J. H. Braslavsky, “String instability in classes of linear time invariant formation control with limited communication range,” IEEE Transactions on Automatic Control, vol. 55, no. 7, pp. 1519–1530, 2010.
  8. G. Gunter, D. Gloudemans, R. E. Stern, S. McQuade, R. Bhadani, M. Bunting, M. L. Delle Monache, R. Lysecky, B. Seibold, J. Sprinkle, et al., “Are commercially implemented adaptive cruise control systems string stable?,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp. 6992–7003, 2020.
  9. L. Socha, “Stochastic stability of interconnected string systems,” Chaos, Solitons & Fractals, vol. 19, no. 4, pp. 949–955, 2004.
  10. L. Rybarska-Rusinek and L. Socha, “String stability of singularly perturbed stochastic systems,” Stochastic analysis and applications, vol. 25, no. 4, pp. 719–737, 2007.
  11. S. Feng, Y. Zhang, S. Li, Z. Cao, H. Liu, and L. Li, “String stability for vehicular platoon control: Definitions and analysis methods,” Annual Reviews in Control, vol. 47, pp. 81–97, 2019.
  12. F. J. Vargas, A. I. Maass, and A. A. Peters, “String stability for predecessor following platooning over lossy communication channels,” in International Symposium on Mathematical Theory of Networks and Systems, 2018.
  13. M. A. Gordon, F. J. Vargas, and A. A. Peters, “Comparison of simple strategies for vehicular platooning with lossy communication,” IEEE Access, vol. 9, pp. 103996–104010, 2021.
  14. C. Lei, E. M. Van Eenennaam, W. K. Wolterink, G. Karagiannis, G. Heijenk, and J. Ploeg, “Impact of packet loss on CACC string stability performance,” 11th International Conference on ITS Telecommunications (ITST), pp. 381–386, 2011.
  15. E. van Nunen, J. Verhaegh, E. Silvas, E. Semsar-Kazerooni, and N. van de Wouw, “Robust model predictive cooperative adaptive cruise control subject to V2V impairments,” in 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8, IEEE, 2017.
  16. F. Acciani, P. Frasca, A. Stoorvogel, E. Semsar-Kazerooni, and G. Heijenk, “Cooperative adaptive cruise control over unreliable networks: an observer-based approach to increase robustness to packet loss,” in European Control Conference (ECC), pp. 1399–1404, IEEE, 2018.
  17. F. I. Villenas, F. J. Vargas, and A. A. Peters, “A Kalman-based compensation strategy for platoons subject to data loss: Numerical and empirical study,” Mathematics, vol. 11, no. 5, p. 1228, 2023.
  18. F. Acciani, P. Frasca, G. Heijenk, and A. A. Stoorvogel, “Stochastic string stability of vehicle platoons via cooperative adaptive cruise control with lossy communication,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 10912–10922, 2021.
  19. Z. Li, B. Hu, M. Li, and G. Luo, “String stability analysis for vehicle platooning under unreliable communication links with event-triggered strategy,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2152–2164, 2019.
  20. C. Zhao, L. Cai, and P. Cheng, “Stability analysis of vehicle platooning with limited communication range and random packet losses,” IEEE Internet of Things Journal, vol. 8, no. 1, pp. 262–277, 2020.
  21. H. Rezaee, K. Zhang, T. Parisini, and M. M. Polycarpou, “Cooperative adaptive cruise control in the presence of communication and radar stochastic data loss,” IEEE Transactions on Intelligent Transportation Systems, 2024.
  22. F. J. Vargas, M. A. Gordon, A. A. Peters, and A. I. Maass, “On stochastic string stability with applications to platooning over additive noise channels,” Under review at Automatica, 2024.
  23. M. A. Gordon, F. J. Vargas, A. A. Peters, and A. I. Maass, “Platoon stability conditions under inter-vehicle additive noisy communication channels,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 3150–3155, 2020.
  24. J. Shi, J. Zhang, X. Xu, and X. Yu, “Stability analysis of stochastic interconnected systems by vector Lyapunov function method,” Asian Journal of control, vol. 17, no. 5, pp. 1789–1797, 2015.
  25. L. Socha, “Exponential mean-square stability of stochastic string hybrid systems under continuous non-Gaussian excitation,” Asian Journal of Control, vol. 20, no. 6, pp. 2116–2129, 2018.
  26. J. Ploeg, N. Van De Wouw, and H. Nijmeijer, “ℒpsubscriptℒ𝑝\mathcal{L}_{p}caligraphic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT string stability of cascaded systems: Application to vehicle platooning,” IEEE Transactions on Control Systems Technology, vol. 22, no. 2, pp. 786–793, 2013.
  27. B. Besselink and K. H. Johansson, “String Stability and a Delay-Based Spacing Policy for Vehicle Platoons Subject to Disturbances,” IEEE Transactions on Automatic Control, vol. 62, no. 9, pp. 4376–4391, 2017.
  28. J. Monteil, M. Bouroche, and D. J. Leith, “ℒ2subscriptℒ2\mathcal{L}_{2}caligraphic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and ℒ∞subscriptℒ\mathcal{L}_{\infty}caligraphic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT stability analysis of heterogeneous traffic with application to parameter optimization for the control of automated vehicles,” IEEE Transactions on Control Systems Technology, vol. 27, no. 3, pp. 934–949, 2018.
  29. J. Monteil, G. Russo, and R. Shorten, “On ℒ∞subscriptℒ\mathcal{L}_{\infty}caligraphic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT string stability of nonlinear bidirectional asymmetric heterogeneous platoon systems,” Automatica, vol. 105, pp. 198–205, 2019.
  30. S. Feng, H. Sun, Y. Zhang, J. Zheng, H. X. Liu, and L. Li, “Tube-based discrete controller design for vehicle platoons subject to disturbances and saturation constraints,” IEEE Transactions on Control Systems Technology, vol. 28, no. 3, pp. 1066–1073, 2020.
  31. R. Teo, D. M. Stipanovic, and C. J. Tomlin, “Decentralized spacing control of a string of multiple vehicles over lossy datalinks,” IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp. 469–473, 2010.
  32. M. A. Gordon, F. J. Vargas, and A. A. Peters, “Mean square stability conditions for platoons with lossy inter-vehicle communication channels,” Automatica, vol. 147, p. 110710, 2023.
  33. Y. Tang, M. Yan, P. Yang, and L. Zuo, “Consensus based control algorithm for vehicle platoon with packet losses,” in 37th Chinese Control Conference (CCC), pp. 7684–7689, IEEE, 2018.
  34. A. Elahi, A. Alfi, and H. Modares, “Distributed consensus control of vehicular platooning under delay, packet dropout and noise: Relative state and relative input-output control strategies,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 20123–20133, 2022.
  35. D. Swaroop and K. Rajagopal, “A review of constant time headway policy for automatic vehicle following,” in IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585), pp. 65–69, IEEE, 2001.
  36. R. Rajamani and C. Zhu, “Semi-autonomous adaptive cruise control systems,” IEEE Transactions on Vehicular Technology, vol. 51, no. 5, pp. 1186–1192, 2002.
  37. P. A. Ioannou and C.-C. Chien, “Autonomous intelligent cruise control,” IEEE Transactions on Vehicular technology, vol. 42, no. 4, pp. 657–672, 1993.
  38. T. V. Nguyen, P. Shailesh, B. Sudhir, G. Kapil, L. Jiang, Z. Wu, D. Malladi, and J. Li, “A comparison of cellular vehicle-to-everything and dedicated short range communication,” in IEEE Vehicular Networking Conference (VNC), pp. 101–108, IEEE, 2017.
  39. V. S. Dolk, J. Ploeg, and W. M. H. Heemels, “Event-triggered control for string-stable vehicle platooning,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 12, pp. 3486–3500, 2017.
  40. J. Ploeg, B. T. Scheepers, E. Van Nunen, N. Van de Wouw, and H. Nijmeijer, “Design and experimental evaluation of cooperative adaptive cruise control,” in 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 260–265, IEEE, 2011.
  41. G. Walsh, O. Beldiman, and L. Bushnell, “Asymptotic behavior of nonlinear networked control systems,” IEEE Transactions on Automatic Control, vol. 46, no. 7, pp. 1093–1097, 2001.
  42. M. Tabbara and D. Nešić, “Input–output stability of networked control systems with stochastic protocols and channels,” IEEE Transactions on Automatic control, vol. 53, no. 5, pp. 1160–1175, 2008.
  43. A. I. Maass, D. Nešić, R. Postoyan, and Y. Tan, “On state estimation for nonlinear systems under random access wireless protocols,” Mathematics of Control, Signals, and Systems, vol. 35, no. 1, pp. 187–213, 2023.
  44. H. Tijms, A first course in stochastic models. John Wiley and sons, 2003.
  45. D. Nešić and A. Teel, “Input-output stability properties of networked control systems,” IEEE Transactions on Automatic Control, vol. 49, no. 10, pp. 1650–1667, 2004.
  46. S. Öncü, N. Van de Wouw, W. Heemels, and H. Nijmeijer, “String stability of interconnected vehicles under communication constraints,” in 51st IEEE Conference on Decision and Control, pp. 2459–2464, IEEE, 2012.
  47. J. Wheels, “Process control communications: Token bus, CSMA/CD, or token ring?,” ISA Transactions, vol. 32, no. 2, pp. 193–198, 1993.
  48. J. Hespanha and A. Teel, “Stochastic impulsive systems driven by renewal processes,” in 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS06), 2006.
  49. A. I. Maass and D. Nešić, “Stabilization of non-linear networked control systems closed over a lossy wirelesshart network,” IEEE Control Systems Letters, vol. 3, no. 4, pp. 996–1001, 2019.
  50. H. Khalil, “Nonlinear systems, 3rd,” New Jewsey, Prentice Hall, vol. 9, no. 4.2, 2002.
  51. A. Aslam, L. Almeida, and F. Santos, “A flexible TDMA overlay protocol for vehicles platooning,” in International Workshop on Communication Technologies for Vehicles, pp. 169–180, Springer, 2018.
  52. R. Sanfelice, D. Copp, and P. Nanez, “A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid Equations (HyEQ) Toolbox,” in Proceedings of the 16th international conference on Hybrid systems: computation and control, pp. 101–106, 2013.

Summary

We haven't generated a summary for this paper yet.