Benchmarking logical three-qubit quantum Fourier transform encoded in the Steane code on a trapped-ion quantum computer (2404.08616v1)
Abstract: We implement logically encoded three-qubit circuits for the quantum Fourier transform (QFT), using the [[7,1,3]] Steane code, and benchmark the circuits on the Quantinuum H2-1 trapped-ion quantum computer. The circuits require multiple logical two-qubit gates, which are implemented transversally, as well as logical non-Clifford single-qubit rotations, which are performed by non-fault-tolerant state preparation followed by a teleportation gadget. First, we benchmark individual logical components using randomized benchmarking for the logical two-qubit gate, and a Ramsey-type experiment for the logical $T$ gate. We then implement the full QFT circuit, using two different methods for performing a logical control-$T$, and benchmark the circuits by applying it to each basis state in a set of bases that is sufficient to lower bound the process fidelity. We compare the logical QFT benchmark results to predictions based on the logical component benchmarks.
- D. Gottesman, Quantum fault tolerance in small experiments (2016), arXiv:1610.03507 [quant-ph] .
- C. N. Self, M. Benedetti, and D. Amaro, Nature Physics (2024).
- A. Steane, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452, 2551–2577 (1996).
- E. Magesan, J. M. Gambetta, and J. Emerson, Phys. Rev. Lett. 106, 180504 (2011).
- Ciaran Ryan-Anderson, Pecos: Performance estimator of codes on surfaces, https://github.com/PECOS-packages/PECOS (2018).
- D. Gottesman, Stabilizer codes and quantum error correction (California Institute of Technology, 1997).
- H. Bombin and M.-A. Martin-Delgado, Physical review letters 98, 160502 (2007).
- A. J. Landahl, J. T. Anderson, and P. R. Rice, Fault-tolerant quantum computing with color codes (2011), arXiv:1108.5738 [quant-ph] .
- A. J. Landahl and C. Ryan-Anderson, arXiv preprint arXiv:1407.5103 (2014).
- D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation (2009), arXiv:0904.2557 [quant-ph] .
- H. Goto, Scientific reports 6, 1 (2016).
- B. Eastin and E. Knill, Phys. Rev. Lett. 102, 110502 (2009).
- C. Chamberland and A. W. Cross, Quantum 3, 143 (2019).
- Qiskit contributors, Qiskit: An open-source framework for quantum computing (2023).
- A. A. Mele, Introduction to haar measure tools in quantum information: A beginner’s tutorial (2023), arXiv:2307.08956 [quant-ph] .
- Quantinuum hardware specificiations (2023).
- K. Temme, S. Bravyi, and J. M. Gambetta, Phys. Rev. Lett. 119, 180509 (2017).
- N. J. Ross and P. Selinger, Quantum Info. Comput. 16, 901–953 (2016).
- B. Koczor, J. J. L. Morton, and S. C. Benjamin, Phys. Rev. Lett. 132, 130602 (2024).
- Y. Nam, Y. Su, and D. Maslov, npj Quantum Information 6, 26 (2020).
- H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005).
- W. K. Wootters and B. D. Fields, Annals of Physics 191, 363 (1989).
- M. A. Nielsen, Physics Letters A 303, 249 (2002).
- K. Mayer, Data for ‘benchmarking logical three-qubit quantum fourier transform encoded in the steane code on a trapped-ion quantum computer’ (2024).
- J. Preskill, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 385 (1998).
- D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
- X. Zhou, D. W. Leung, and I. L. Chuang, Physical Review A 62, 052316 (2000).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.