Learning-Based Joint Antenna Selection and Precoding Design for Cell-Free MIMO Networks (2404.08607v1)
Abstract: This paper considers a downlink cell-free multiple-input multiple-output (MIMO) network in which multiple multi-antenna base stations (BSs) serve multiple users via coherent joint transmission. In order to reduce the energy consumption by radio frequency components, each BS selects a subset of antennas for downlink data transmission after estimating the channel state information (CSI). We aim to maximize the sum spectral efficiency by jointly optimizing the antenna selection and precoding design. To alleviate the fronthaul overhead and enable real-time network operation, we propose a distributed scalable machine learning algorithm. In particular, at each BS, we deploy a convolutional neural network (CNN) for antenna selection and a graph neural network (GNN) for precoding design. Different from conventional centralized solutions that require a large amount of CSI and signaling exchange among the BSs, the proposed distributed machine learning algorithm takes only locally estimated CSI as input. With well-trained learning models, it is shown that the proposed algorithm significantly outperforms the distributed baseline schemes and achieves a sum spectral efficiency comparable to its centralized counterpart.
- C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas et al., “On the road to 6G: Visions, requirements, key technologies and testbeds,” IEEE Commun. Surv. Tutor., 2023.
- S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne, “NR: The new 5G radio access technology,” IEEE Commun. Mag., vol. 1, no. 4, pp. 24–30, 2017.
- C. Chen, J. Zhang, X. Chu, and J. Zhang, “On the deployment of small cells in 3D HetNets with multi-antenna base stations,” IEEE Trans. Wirel. Commun., vol. 21, no. 11, pp. 9761–9774, 2022.
- H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.
- A. Burr, M. Bashar, and D. Maryopi, “Ultra-dense radio access networks for smart cities: Cloud-RAN, fog-RAN and “cell-free” massive MIMO,” arXiv preprint arXiv:1811.11077, 2018.
- H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, “On the total energy efficiency of cell-free massive MIMO,” IEEE trans. green commun. netw., vol. 2, no. 1, pp. 25–39, 2017.
- R. W. Heath and A. Paulraj, “Antenna selection for spatial multiplexing systems based on minimum error rate,” in Proc. IEEE Int. Conf. Commun., Jun. 2001, pp. 2276–2280.
- D. López-Pérez, A. De Domenico, N. Piovesan, G. Xinli, H. Bao, S. Qitao, and M. Debbah, “A survey on 5G radio access network energy efficiency: Massive MIMO, lean carrier design, sleep modes, and machine learning,” IEEE Commun. Surv. Tutor., vol. 24, no. 1, pp. 653–697, 2022.
- X. Gao, O. Edfors, F. Tufvesson, and E. G. Larsson, “Massive MIMO in real propagation environments: Do all antennas contribute equally?” IEEE Trans. Commun., vol. 63, no. 11, pp. 3917–3928, 2015.
- B. Makki, A. Ide, T. Svensson, T. Eriksson, and M.-S. Alouini, “A genetic algorithm-based antenna selection approach for large-but-finite MIMO networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 6591–6595, 2016.
- M. Guo and M. C. Gursoy, “Statistical learning based joint antenna selection and user scheduling for single-cell massive MIMO systems,” IEEE trans. green commun. netw., vol. 5, no. 1, pp. 471–483, 2020.
- S. Wang, M. Zhu, Z. Li, L. Yang, C.-X. Wang, and R. Ruby, “Antenna selection strategies for massive MIMO systems with limited-resolution ADCs/DACs,” IEEE Trans. Wireless Commun., 2023.
- P. Zhu, Z. Sheng, J. Bao, and J. Li, “Antenna selection for full-duplex distributed massive MIMO via the elite preservation genetic algorithm,” IEEE Commun. Lett., vol. 26, no. 4, pp. 922–926, 2022.
- J. C. Marinello, T. Abrão, A. Amiri, E. De Carvalho, and P. Popovski, “Antenna selection for improving energy efficiency in XL-MIMO systems,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13 305–13 318, 2020.
- O. Elijah, S. K. A. Rahim, W. K. New, C. Y. Leow, K. Cumanan, and T. K. Geok, “Intelligent massive MIMO systems for beyond 5G networks: An overview and future trends,” IEEE Access, vol. 10, pp. 102 532–102 563, 2022.
- H. Hellström, J. M. B. da Silva Jr, M. M. Amiri, M. Chen, V. Fodor, H. V. Poor, C. Fischione et al., “Wireless for machine learning: A survey,” Foundations and Trends® in Signal Processing, vol. 15, no. 4, pp. 290–399, 2022.
- H. Guo and V. K. Lau, “Robust deep learning for uplink channel estimation in cellular network under inter-cell interference,” IEEE J. Sel. Areas Commun., 2023.
- E. Balevi, A. Doshi, and J. G. Andrews, “Massive MIMO channel estimation with an untrained deep neural network,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2079–2090, 2020.
- T. Jiang, H. V. Cheng, and W. Yu, “Learning to reflect and to beamform for intelligent reflecting surface with implicit channel estimation,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 1931–1945, 2021.
- C. Chen, S. Xu, J. Zhang, and J. Zhang, “A distributed machine learning-based approach for IRS-enhanced cell-free MIMO networks,” IEEE Trans. Wireless Commun., 2023.
- Y. Chen, W. Xia, J. Zhang, and Y. Zhu, “Joint learning of channel estimation and beamforming for cell-free massive MIMO systems,” IEEE Wirel. Commun. Lett., 2024.
- N. Ghiasi, S. Mashhadi, S. Farahmand, S. M. Razavizadeh, and I. Lee, “Energy efficient ap selection for cell-free massive MIMO systems: Deep reinforcement learning approach,” IEEE trans. green commun. netw., vol. 7, no. 1, pp. 29–41, 2022.
- C. D’Andrea, A. Zappone, S. Buzzi, and M. Debbah, “Uplink power control in cell-free massive MIMO via deep learning,” in 2019 IEEE 8th International workshop on computational advances in multi-sensor adaptive processing (CAMSAP). IEEE, 2019, pp. 554–558.
- M. Zaher, Ö. T. Demir, E. Björnson, and M. Petrova, “Learning-based downlink power allocation in cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 174–188, 2022.
- J. Joung, “Machine learning-based antenna selection in wireless communications,” IEEE Commun. Lett., vol. 20, no. 11, pp. 2241–2244, 2016.
- S. Gecgel, C. Goztepe, and G. K. Kurt, “Transmit antenna selection for large-scale MIMO GSM with machine learning,” IEEE Wirel. Commun. Lett., vol. 9, no. 1, pp. 113–116, 2019.
- T. X. Vu, S. Chatzinotas, V.-D. Nguyen, D. T. Hoang, D. N. Nguyen, M. Di Renzo, and B. Ottersten, “Machine learning-enabled joint antenna selection and precoding design: From offline complexity to online performance,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3710–3722, 2021.
- A. M. Elbir and K. V. Mishra, “Joint antenna selection and hybrid beamformer design using unquantized and quantized deep learning networks,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 1677–1688, Mar. 2020.
- X. Chai, H. Gao, J. Sun, X. Su, T. Lv, and J. Zeng, “Reinforcement learning based antenna selection in user-centric massive MIMO,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020, pp. 1–6.
- E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?” IEEE Trans. Wirel. Commun., vol. 14, no. 6, pp. 3059–3075, 2015.
- H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. V. Srinivas, “Downlink resource allocation in multiuser cell-free MIMO networks with user-centric clustering,” IEEE Trans. Wireless Commun., vol. 21, no. 3, pp. 1482–1497, 2021.
- J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell TDD systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640–2651, 2011.
- J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for quantum chemistry,” in Proc. Int. Conf. Mach. Learn. (ICML), 2017, pp. 1263–1272.
- C. Chen, J. Zhang, T. Lu, M. Sandell, and L. Chen, “Secret key generation for IRS-assisted multi-antenna systems: A machine learning-based approach,” IEEE Trans. Inf. Forensics Secur., vol. 19, pp. 1086–1098, 2024.
- E. Björnson and L. Sanguinetti, “Making cell-free massive MIMO competitive with MMSE processing and centralized implementation,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 77–90, 2019.