Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Distributed Dynamic Coordinated Beamforming in Massive MIMO Cellular Networks (2303.14082v1)

Published 24 Mar 2023 in cs.IT, eess.SP, and math.IT

Abstract: To accommodate the explosive wireless traffics, massive multiple-input multiple-output (MIMO) is regarded as one of the key enabling technologies for next-generation communication systems. In massive MIMO cellular networks, coordinated beamforming (CBF), which jointly designs the beamformers of multiple base stations (BSs), is an efficient method to enhance the network performance. In this paper, we investigate the sum rate maximization problem in a massive MIMO mobile cellular network, where in each cell a multi-antenna BS serves multiple mobile users simultaneously via downlink beamforming. Although existing optimization-based CBF algorithms can provide near-optimal solutions, they require realtime and global channel state information (CSI), in addition to their high computation complexity. It is almost impossible to apply them in practical wireless networks, especially highly dynamic mobile cellular networks. Motivated by this, we propose a deep reinforcement learning based distributed dynamic coordinated beamforming (DDCBF) framework, which enables each BS to determine the beamformers with only local CSI and some historical information from other BSs.Besides, the beamformers can be calculated with a considerably lower computational complexity by exploiting neural networks and expert knowledge, i.e., a solution structure observed from the iterative procedure of the weighted minimum mean square error (WMMSE) algorithm. Moreover, we provide extensive numerical simulations to validate the effectiveness of the proposed DRL-based approach. With lower computational complexity and less required information, the results show that the proposed approach can achieve comparable performance to the centralized iterative optimization algorithms.

Citations (7)

Summary

We haven't generated a summary for this paper yet.