Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Involutive Khovanov homology and equivariant knots (2404.08568v4)

Published 12 Apr 2024 in math.GT

Abstract: For strongly invertible knots, we define an involutive version of Khovanov homology, and from it derive a pair of integer-valued invariants $(\underline{s}, \bar{s})$, which is an equivariant version of Rasmussen's $s$-invariant. Using these invariants, we reprove that the infinite family of knots $J_n$ introduced by Hayden each admits exotic pairs of slice disks. Our construction is intended to give a Khovanov-theoretic analogue of the formalism given by Dai, Mallick and Stoffregen in involutive knot Floer theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Akram Alishahi “Unknotting number and Khovanov homology” In Pacific J. Math. 301.1, 2019, pp. 15–29 URL: https://doi.org/10.2140/pjm.2019.301.15
  2. Dror Bar-Natan “Khovanov’s homology for tangles and cobordisms” In Geom. Topol. 9, 2005, pp. 1443–1499 DOI: 10.2140/gt.2005.9.1443
  3. “Equivariant 4-genera of strongly invertible and periodic knots” In J. Topol. 15.3, 2022, pp. 1635–1674
  4. Tim D. Cochran and Eamonn Tweedy “Positive links” In Algebr. Geom. Topol. 14.4, 2014, pp. 2259–2298 DOI: 10.2140/agt.2014.14.2259
  5. Irving Dai, Abhishek Mallick and Matthew Stoffregen “Equivariant knots and knot Floer homology” In J. Topol. 16.3, 2023, pp. 1167–1236 DOI: 10.1112/topo.12312
  6. C.McA. Gordon “On the higher-dimensional Smith conjecture” In Proc. London Math. Soc. (3) 29, 1974, pp. 98–110 DOI: 10.1112/plms/s3-29.1.98
  7. Kyle Hayden “Corks, covers, and complex curves”, 2021 arXiv:2107.06856 [math.GT]
  8. “Khovanov homology and exotic surfaces in the 4-ball” In J. Reine Angew. Math. 809, 2024, pp. 217–246 DOI: 10.1515/crelle-2024-0001
  9. Kristen Hendricks, Ciprian Manolescu and Ian Zemke “A connected sum formula for involutive Heegaard Floer homology” In Selecta Math. (N.S.) 24.2, 2018, pp. 1183–1245 DOI: 10.1007/s00029-017-0332-8
  10. “A cobordism realizing crossing change on 𝔰⁢𝔩2𝔰subscript𝔩2\mathfrak{sl}_{2}fraktur_s fraktur_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT tangle homology and a categorified Vassiliev skein relation” In Topology Appl. 296, 2021, pp. Paper No. 107646\bibrangessep31 DOI: 10.1016/j.topol.2021.107646
  11. Mikhail Khovanov “A categorification of the Jones polynomial” In Duke Math. J. 101.3, 2000, pp. 359–426 DOI: 10.1215/S0012-7094-00-10131-7
  12. Artem Kotelskiy, Liam Watson and Claudius Zibrowius “Immersed curves in Khovanov homology” arXiv, 2019 DOI: 10.48550/ARXIV.1910.14584
  13. Eun Soo Lee “An endomorphism of the Khovanov invariant” In Adv. Math. 197.2, 2005, pp. 554–586 DOI: 10.1016/j.aim.2004.10.015
  14. Lukas Lewark “The Rasmussen invariant of arborescent and of mutant links”, 2009
  15. “Khovanov homology of strongly invertible knots and their quotients”, 2022 arXiv:2203.13895 [math.GT]
  16. “A refinement of Khovanov homology” In Geom. Topol. 25.4, 2021, pp. 1861–1917 DOI: 10.2140/gt.2021.25.1861
  17. “A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds” In Duke Math. J. 172.2, 2023, pp. 231–311 DOI: 10.1215/00127094-2022-0039
  18. “The Smith conjecture” Papers presented at the symposium held at Columbia University, New York, 1979 112, Pure and Applied Mathematics Academic Press, Inc., Orlando, FL, 1984, pp. xv+243
  19. Lisa Piccirillo “The Conway knot is not slice” In Ann. of Math. (2) 191.2, 2020, pp. 581–591 DOI: 10.4007/annals.2020.191.2.5
  20. Jacob Rasmussen “Khovanov homology and the slice genus” In Invent. Math. 182.2, 2010, pp. 419–447 DOI: 10.1007/s00222-010-0275-6
  21. Makoto Sakuma “On strongly invertible knots” In Algebraic and topological theories (Kinosaki, 1984) Kinokuniya, Tokyo, 1986, pp. 176–196
  22. Taketo Sano “A description of Rasmussen’s invariant from the divisibility of Lee’s canonical class” In J. Knot Theory Ramifications 29.6, 2020, pp. 2050037\bibrangessep39 DOI: 10.1142/S0218216520500376
  23. “A family of slice-torus invariants from the divisibility of Lee classes”, 2023 arXiv:2211.02494 [math.GT]
  24. Alexander N. Shumakovitch “Torsion of Khovanov homology” In Fund. Math. 225.1, 2014, pp. 343–364 DOI: 10.4064/fm225-1-16
  25. Michael Snape “Homological invariants of strongly invertible knots” University of Glasgow, 2018
  26. Paul Turner “Khovanov homology and diagonalizable Frobenius algebras” In J. Knot Theory Ramif. 29.01 World Scientific Publishing Co., 2020, pp. 1950095
  27. Friedhelm Waldhausen “Über Involutionen der 3333-Sphäre” In Topology 8, 1969, pp. 81–91 DOI: 10.1016/0040-9383(69)90033-0
  28. Liam Watson “Khovanov homology and the symmetry group of a knot” In Adv. Math. 313, 2017, pp. 915–946 DOI: 10.1016/j.aim.2017.04.003
  29. S. Wehrli “A spanning tree model for Khovanov homology” In J. Knot Theory Ramifications 17.12, 2008, pp. 1561–1574 DOI: 10.1142/S0218216508006762
  30. Yuval Wigderson “The Bar-Natan theory splits” In J. Knot Theory Ramifications 25.4, 2016, pp. 1650014\bibrangessep19 DOI: 10.1142/S0218216516500140

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.