Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 16 tok/s
GPT-5 High 18 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Quantum molecular docking with quantum-inspired algorithm (2404.08265v1)

Published 12 Apr 2024 in physics.chem-ph and quant-ph

Abstract: Molecular docking (MD) is a crucial task in drug design, which predicts the position, orientation, and conformation of the ligand when bound to a target protein. It can be interpreted as a combinatorial optimization problem, where quantum annealing (QA) has shown promising advantage for solving combinatorial optimization. In this work, we propose a novel quantum molecular docking (QMD) approach based on QA-inspired algorithm. We construct two binary encoding methods to efficiently discretize the degrees of freedom with exponentially reduced number of bits and propose a smoothing filter to rescale the rugged objective function. We propose a new quantum-inspired algorithm, hopscotch simulated bifurcation (hSB), showing great advantage in optimizing over extremely rugged energy landscapes. This hSB can be applied to any formulation of objective function under binary variables. An adaptive local continuous search is also introduced for further optimization of the discretized solution from hSB. Concerning the stability of docking, we propose a perturbation detection method to help ranking the candidate poses. We demonstrate our approach on a typical dataset. QMD has shown advantages over the search-based Autodock Vina and the deep-learning DIFFDOCK in both re-docking and self-docking scenarios. These results indicate that quantum-inspired algorithms can be applied to solve practical problems in the drug discovery even before quantum hardware become mature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. Lu, W.; Wu, Q.; Zhang, J.; Rao, J.; Li, C.; Zheng, S. TANKBind: Trigonometry-Aware Neural NetworKs for Drug-Protein Binding Structure Prediction. NeurIPS 2022,
  2. Huang, T.; Xu, J.; Luo, T.; Gu, X.; Goh, R.; Wong, W.-F. Benchmarking Quantum(-inspired) Annealing Hardware on Practical Use Cases. 2022
  3. Zeng, Q.-G.; Cui, X.-P.; Liu, B.; Wang, Y.; Mosharev, P. A.; Yung, M.-H. Performance of Quantum Annealing Inspired Algorithms for Max-Cut Problem. 2024; in preparation
  4. Pandey, M.; Zaborniak, T.; Melo, H.; Galda, A.; Mulligan, V. K. Multibody molecular docking on a quantum annealer. 2022; arXiv:2210.11401
  5. Yan, G.; Wu, H.; Yan, J. Quantum 3D Graph Learning with Applications to Molecule Embedding. Proceedings of the 40th International Conference on Machine Learning. 2023; pp 39126–39137
  6. Fingerhuth, M.; Babej, T.; Ing, C. A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding. 2018; arXiv:1810.13411
  7. Babej, T.; Ing, C.; Fingerhuth, M. Coarse-grained lattice protein folding on a quantum annealer. 2018; arxiv:1811.00713
  8. Chermoshentsev, D. A.; Malyshev, A. O.; Esencan, M.; Tiunov, E. S.; Mendoza, D.; Aspuru-Guzik, A.; Fedorov, A. K.; Lvovsky, A. I. Polynomial unconstrained binary optimisation inspired by optical simulation. 2021; arXiv:2106.13167
  9. See Supplemental Material for the details.
  10. Gardner, M. Knotted Doughnuts and Other Mathematical Entertainments; Springer New York: New York: W. H. Freeman, 1986
  11. RDKit: Open-source cheminformatics. https://www.rdkit.org
  12. Wang, B.-Y.; Cui, X.; Xu, H.; Zhang, G.; Yung, M.-H. Phase encoding method and device. 2023; Patent No.CN202310184040.5
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com