Observational Tests of Active Galactic Nuclei Feedback: An Overview of Approaches and Interpretation (2404.08050v1)
Abstract: Growing supermassive black holes (Active Galactic Nuclei; AGN) release energy with the potential to alter their host galaxies and larger-scale environment; a process named "AGN feedback". Feedback is a required component of galaxy formation models and simulations to explain observed properties of galaxy populations. We provide a broad overview of observational approaches that are designed to establish the physical processes that couple AGN energy to the multi-phase gas, or to find evidence that AGN impact upon galaxy evolution. The orders-of-magnitude range in spatial, temporal, and temperature scales, requires a diverse set of observational studies. For example, studying individual targets in detail sheds light on coupling mechanisms; however, evidence for long-term impact of AGN is better established within galaxy populations that are not necessarily currently active. We emphasise how modern surveys have revealed the importance of radio emission for identifying, and characterising, feedback mechanisms. At the achieved sensitivities, the detected radio emission can trace a range of processes, including shocked interstellar medium caused by AGN outflows (driven by various mechanisms including radiation pressure, accretion disc winds, and jets). We also describe how interpreting observations in the context of theoretical work can be challenging, in part, due to some of the adopted terminology.
- Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. ApJ 2008, 689, 1044–1062, [arXiv:astro-ph/0808.2870]. https://doi.org/10.1086/592738.
- Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARA&A 2013, 51, 511–653, [arXiv:astro-ph.CO/1304.7762]. https://doi.org/10.1146/annurev-astro-082708-101811.
- First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. ApJ 2019, 875, L1, [arXiv:astro-ph.GA/1906.11238]. https://doi.org/10.3847/2041-8213/ab0ec7.
- Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. A&A 2020, 636, L5, [arXiv:astro-ph.GA/2004.07187]. https://doi.org/10.1051/0004-6361/202037813.
- Abell 1201: detection of an ultramassive black hole in a strong gravitational lens. MNRAS 2023, 521, 3298–3322, [arXiv:astro-ph.GA/2303.15514]. https://doi.org/10.1093/mnras/stad587.
- Soltan, A. Masses of quasars. MNRAS 1982, 200, 115–122. https://doi.org/10.1093/mnras/200.1.115.
- Local supermassive black holes, relics of active galactic nuclei and the X-ray background. MNRAS 2004, 351, 169–185, [arXiv:astro-ph/astro-ph/0311619]. https://doi.org/10.1111/j.1365-2966.2004.07765.x.
- What drives the growth of black holes? New A Rev. 2012, 56, 93–121, [arXiv:astro-ph.GA/1112.1949]. https://doi.org/10.1016/j.newar.2011.11.003.
- AGN outflows and feedback twenty years on. Nature Astronomy 2018, 2, 198–205, [arXiv:astro-ph.GA/1802.10306]. https://doi.org/10.1038/s41550-018-0403-6.
- The Demography of Massive Dark Objects in Galaxy Centers. AJ 1998, 115, 2285–2305, [arXiv:astro-ph/astro-ph/9708072]. https://doi.org/10.1086/300353.
- A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. ApJ 2000, 539, L13–L16, [arXiv:astro-ph/astro-ph/0006289]. https://doi.org/10.1086/312840.
- A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. ApJ 2000, 539, L9–L12, [arXiv:astro-ph/astro-ph/0006053]. https://doi.org/10.1086/312838.
- Quasars and galaxy formation. A&A 1998, 331, L1–L4, [arXiv:astro-ph/astro-ph/9801013]. https://doi.org/10.48550/arXiv.astro-ph/9801013.
- King, A. Black Holes, Galaxy Formation, and the MBH𝐵𝐻{}_{BH}start_FLOATSUBSCRIPT italic_B italic_H end_FLOATSUBSCRIPT-σ𝜎\sigmaitalic_σ Relation. ApJ 2003, 596, L27–L29, [arXiv:astro-ph/astro-ph/0308342]. https://doi.org/10.1086/379143.
- King, A. The AGN-Starburst Connection, Galactic Superwinds, and MBH𝐵𝐻{}_{BH}start_FLOATSUBSCRIPT italic_B italic_H end_FLOATSUBSCRIPT-σ𝜎\sigmaitalic_σ. ApJ 2005, 635, L121–L123, [arXiv:astro-ph/astro-ph/0511034]. https://doi.org/10.1086/499430.
- Evolving cooling flows. MNRAS 1995, 276, 663–678. https://doi.org/10.1093/mnras/276.2.663.
- Cooling Flows and Quasars: Different Aspects of the Same Phenomenon? I. Concepts. ApJ 1997, 487, L105–L108, [arXiv:astro-ph/astro-ph/9706281]. https://doi.org/10.1086/310902.
- High-Resolution X-Ray Spectroscopic Constraints on Cooling-Flow Models for Clusters of Galaxies. ApJ 2003, 590, 207–224, [arXiv:astro-ph/astro-ph/0210662]. https://doi.org/10.1086/374830.
- What Shapes the Luminosity Function of Galaxies? ApJ 2003, 599, 38–49, [arXiv:astro-ph/astro-ph/0302450]. https://doi.org/10.1086/379160.
- Modelling feedback from stars and black holes in galaxy mergers. MNRAS 2005, 361, 776–794, [arXiv:astro-ph/astro-ph/0411108]. https://doi.org/10.1111/j.1365-2966.2005.09238.x.
- The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. MNRAS 2006, 365, 11–28, [arXiv:astro-ph/astro-ph/0508046]. https://doi.org/10.1111/j.1365-2966.2005.09675.x.
- Breaking the hierarchy of galaxy formation. MNRAS 2006, 370, 645–655, [arXiv:astro-ph/astro-ph/0511338]. https://doi.org/10.1111/j.1365-2966.2006.10519.x.
- A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. MNRAS 2008, 391, 481–506, [arXiv:astro-ph/0808.1227]. https://doi.org/10.1111/j.1365-2966.2008.13805.x.
- The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 2015, 446, 521–554, [arXiv:astro-ph.GA/1407.7040]. https://doi.org/10.1093/mnras/stu2058.
- The MassiveBlack-II simulation: the evolution of haloes and galaxies to z ∼similar-to\sim∼ 0. MNRAS 2015, 450, 1349–1374, [arXiv:astro-ph.CO/1402.0888]. https://doi.org/10.1093/mnras/stv627.
- The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback. MNRAS 2016, 463, 3948–3964, [arXiv:astro-ph.GA/1606.03086]. https://doi.org/10.1093/mnras/stw2265.
- Theoretical Challenges in Galaxy Formation. ARA&A 2017, 55, 59–109, [arXiv:astro-ph.GA/1612.06891]. https://doi.org/10.1146/annurev-astro-081913-040019.
- The BAHAMAS project: calibrated hydrodynamical simulations for large-scale structure cosmology. MNRAS 2017, 465, 2936–2965, [arXiv:astro-ph.CO/1603.02702]. https://doi.org/10.1093/mnras/stw2792.
- First results from the IllustrisTNG simulations: the galaxy colour bimodality. MNRAS 2018, 475, 624–647, [arXiv:astro-ph.GA/1707.03395]. https://doi.org/10.1093/mnras/stx3040.
- SIMBA: Cosmological simulations with black hole growth and feedback. MNRAS 2019, 486, 2827–2849, [arXiv:astro-ph.GA/1901.10203]. https://doi.org/10.1093/mnras/stz937.
- The Role of Black Hole Feedback on Size and Structural Evolution in Massive Galaxies. ApJ 2018, 866, 91, [arXiv:astro-ph.GA/1809.02143]. https://doi.org/10.3847/1538-4357/aae076.
- The gas fractions of dark matter haloes hosting simulated ∼similar-to\sim∼L⋆⋆{}^{{\star}}start_FLOATSUPERSCRIPT ⋆ end_FLOATSUPERSCRIPT galaxies are governed by the feedback history of their black holes. MNRAS 2019, 485, 3783–3793, [arXiv:astro-ph.GA/1810.07696]. https://doi.org/10.1093/mnras/stz635.
- Total density profile of massive early-type galaxies in HORIZON-AGN simulation: impact of AGN feedback and comparison with observations. MNRAS 2019, 483, 4615–4627, [arXiv:astro-ph.GA/1801.09754]. https://doi.org/10.1093/mnras/sty3475.
- How AGN feedback drives the size growth of the first quasars. MNRAS 2019, 490, 4918–4934, [arXiv:astro-ph.GA/1903.04544]. https://doi.org/10.1093/mnras/stz2944.
- The impact of stellar and AGN feedback on halo-scale baryonic and dark matter accretion in the EAGLE simulations. MNRAS 2020, 498, 1668–1692, [arXiv:astro-ph.GA/2006.00924]. https://doi.org/10.1093/mnras/staa2359.
- The impact of AGN-driven winds on physical and observable galaxy sizes. MNRAS 2023, 523, 2409–2421, [arXiv:astro-ph.GA/2303.12858]. https://doi.org/10.1093/mnras/stad1528.
- AGN radiation imprints on the circumgalactic medium of massive galaxies. MNRAS 2024, 527, 8078–8102, [arXiv:astro-ph.GA/2311.01503]. https://doi.org/10.1093/mnras/stad3410.
- Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars. MNRAS 2016, 455, 4191–4211, [arXiv:astro-ph.GA/1511.00013]. https://doi.org/10.1093/mnras/stv2571.
- The energetics of AGN radiation pressure-driven outflows. MNRAS 2018, 476, 512–519, [arXiv:astro-ph.GA/1801.09700]. https://doi.org/10.1093/mnras/sty236.
- A Census of Ionized Gas Outflows in Type 1 AGNs: Gas Outflows in AGNs. V. ApJ 2018, 865, 5, [arXiv:astro-ph.GA/1808.03415]. https://doi.org/10.3847/1538-4357/aad9f8.
- Prevalence of radio jets associated with galactic outflows and feedback from quasars. MNRAS 2019, 485, 2710–2730, [arXiv:astro-ph.GA/1902.07727]. https://doi.org/10.1093/mnras/stz556.
- Powering galactic superwinds with small-scale AGN winds. MNRAS 2020, 497, 5229–5255, [arXiv:astro-ph.GA/2006.05997]. https://doi.org/10.1093/mnras/staa2321.
- The Launching of Cold Clouds by Galaxy Outflows. IV. Cosmic-Ray-driven Acceleration. ApJ 2020, 905, 19, [arXiv:astro-ph.GA/2010.07308]. https://doi.org/10.3847/1538-4357/abc00f.
- MAGNUM survey: Compact jets causing large turmoil in galaxies. Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction. A&A 2021, 648, A17, [arXiv:astro-ph.GA/2011.04677]. https://doi.org/10.1051/0004-6361/202039869.
- Impact of relativistic jets on the star formation rate: a turbulence-regulated framework. MNRAS 2021, 508, 4738–4757, [arXiv:astro-ph.GA/2109.13654]. https://doi.org/10.1093/mnras/stab2822.
- Investigating the Narrow-line Region Dynamics in Nearby Active Galaxies. ApJ 2023, 943, 98, [arXiv:astro-ph.GA/2212.02513]. https://doi.org/10.3847/1538-4357/aca75f.
- Ubiquitous radio emission in quasars: predominant AGN origin and a connection to jets, dust and winds. arXiv e-prints 2023, p. arXiv:2312.10177, [arXiv:astro-ph.GA/2312.10177]. https://doi.org/10.48550/arXiv.2312.10177.
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. ARA&A 2012, 50, 455–489, [arXiv:astro-ph.CO/1204.4114]. https://doi.org/10.1146/annurev-astro-081811-125521.
- Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New Journal of Physics 2012, 14, 055023, [arXiv:astro-ph.CO/1204.0006]. https://doi.org/10.1088/1367-2630/14/5/055023.
- The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. ARA&A 2014, 52, 589–660, [arXiv:astro-ph.GA/1403.4620]. https://doi.org/10.1146/annurev-astro-081913-035722.
- Harrison, C.M. Impact of supermassive black hole growth on star formation. Nature Astronomy 2017, 1, 0165, [arXiv:astro-ph.GA/1703.06889]. https://doi.org/10.1038/s41550-017-0165.
- Morganti, R. The many routes to AGN feedback. Frontiers in Astronomy and Space Sciences 2017, 4, 42, [arXiv:astro-ph.GA/1712.05301]. https://doi.org/10.3389/fspas.2017.00042.
- Powerful Outflows and Feedback from Active Galactic Nuclei. ARA&A 2015, 53, 115–154, [arXiv:astro-ph.GA/1503.05206]. https://doi.org/10.1146/annurev-astro-082214-122316.
- Radio galaxies and feedback from AGN jets. New A Rev. 2020, 88, 101539, [arXiv:astro-ph.HE/2003.06137]. https://doi.org/10.1016/j.newar.2020.101539.
- Cool outflows in galaxies and their implications. A&A Rev. 2020, 28, 2, [arXiv:astro-ph.GA/2002.07765]. https://doi.org/10.1007/s00159-019-0121-9.
- Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters. Galaxies 2023, 11, 73, [arXiv:astro-ph.HE/2305.00019]. https://doi.org/10.3390/galaxies11030073.
- Krause, M.G.H. Jet Feedback in Star-Forming Galaxies. Galaxies 2023, 11, 29. https://doi.org/10.3390/galaxies11010029.
- Nuclear obscuration in active galactic nuclei. Nature Astronomy 2017, 1, 679–689, [arXiv:astro-ph.GA/1709.00019]. https://doi.org/10.1038/s41550-017-0232-z.
- The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time. ARA&A 2020, 58, 157–203, [arXiv:astro-ph.GA/2003.06245]. https://doi.org/10.1146/annurev-astro-082812-141034.
- The Circumgalactic Medium. ARA&A 2017, 55, 389–432, [arXiv:astro-ph.GA/1709.09180]. https://doi.org/10.1146/annurev-astro-091916-055240.
- The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. MNRAS 2020, 491, 4462–4480, [arXiv:astro-ph.GA/1908.11380]. https://doi.org/10.1093/mnras/stz3201.
- The nature of the motions of multiphase filaments in the centers of galaxy clusters. Frontiers in Astronomy and Space Sciences 2023, 10, 1138613, [arXiv:astro-ph.GA/2304.09879]. https://doi.org/10.3389/fspas.2023.1138613.
- The Galaxy Activity, Torus, and Outflow Survey (GATOS). I. ALMA images of dusty molecular tori in Seyfert galaxies. A&A 2021, 652, A98, [arXiv:astro-ph.GA/2104.10227]. https://doi.org/10.1051/0004-6361/202141075.
- Relativistic jet feedback - III. Feedback on gas discs. MNRAS 2018, 479, 5544–5566, [arXiv:astro-ph.HE/1803.08305]. https://doi.org/10.1093/mnras/sty1776.
- The origin of fast molecular outflows in quasars: molecule formation in AGN-driven galactic winds. MNRAS 2018, 474, 3673–3699, [arXiv:astro-ph.GA/1706.03784]. https://doi.org/10.1093/mnras/stx3014.
- Peterson, B.M. Variability of Active Galactic Nuclei. In Proceedings of the Advanced Lectures on the Starburst-AGN; Aretxaga, I.; Kunth, D.; Mújica, R., Eds., 2001, p. 3, [arXiv:astro-ph/astro-ph/0109495]. https://doi.org/10.1142/9789812811318_0002.
- Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo? MNRAS 2009, 399, 129–140, [arXiv:astro-ph.CO/0906.5304]. https://doi.org/10.1111/j.1365-2966.2009.15299.x.
- Finding AGN remnant candidates based on radio morphology with machine learning. A&A 2023, 674, A208, [arXiv:astro-ph.GA/2304.05813]. https://doi.org/10.1051/0004-6361/202346035.
- AGN flickering and chaotic accretion. MNRAS 2015, 453, L46–L47, [arXiv:astro-ph.HE/1507.05960]. https://doi.org/10.1093/mnrasl/slv098.
- Active galactic nuclei flicker: an observational estimate of the duration of black hole growth phases of ∼similar-to\sim∼1055{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT yr. MNRAS 2015, 451, 2517–2523, [arXiv:astro-ph.GA/1505.06733]. https://doi.org/10.1093/mnras/stv1136.
- The LoTSS view of radio AGN in the local Universe. The most massive galaxies are always switched on. A&A 2019, 622, A17, [arXiv:astro-ph.GA/1811.05528]. https://doi.org/10.1051/0004-6361/201833883.
- Black Hole Variability and the Star Formation-Active Galactic Nucleus Connection: Do All Star-forming Galaxies Host an Active Galactic Nucleus? ApJ 2014, 782, 9, [arXiv:astro-ph.CO/1306.3218]. https://doi.org/10.1088/0004-637X/782/1/9.
- Feedback from Central Black Holes in Elliptical Galaxies: Two-dimensional Models Compared to One-dimensional Models. ApJ 2011, 737, 26, [arXiv:astro-ph.GA/1007.3505]. https://doi.org/10.1088/0004-637X/737/1/26.
- Obscured Active Galactic Nuclei. ARA&A 2018, 56, 625–671, [arXiv:astro-ph.GA/1806.04680]. https://doi.org/10.1146/annurev-astro-081817-051803.
- X-rays across the galaxy population - II. The distribution of AGN accretion rates as a function of stellar mass and redshift. MNRAS 2018, 474, 1225–1249, [arXiv:astro-ph.HE/1705.01132]. https://doi.org/10.1093/mnras/stx2700.
- Three regimes of black hole feedback. arXiv e-prints 2023, p. arXiv:2309.15898, [arXiv:astro-ph.GA/2309.15898]. https://doi.org/10.48550/arXiv.2309.15898.
- Sustained super-Eddington accretion in high-redshift quasars. arXiv e-prints 2023, p. arXiv:2312.08422, [arXiv:astro-ph.GA/2312.08422]. https://doi.org/10.48550/arXiv.2312.08422.
- A small and vigorous black hole in the early Universe. arXiv e-prints 2023, p. arXiv:2305.12492, [arXiv:astro-ph.GA/2305.12492]. https://doi.org/10.48550/arXiv.2305.12492.
- Black holes in binary systems. Observational appearance. A&A 1973, 24, 337–355.
- Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991. ApJ 1997, 489, 865–889, [arXiv:astro-ph/astro-ph/9705237]. https://doi.org/10.1086/304829.
- Advection-dominated Accretion: A Self-similar Solution. ApJ 1994, 428, L13, [arXiv:astro-ph/astro-ph/9403052]. https://doi.org/10.1086/187381.
- Electromagnetic extraction of energy from Kerr black holes. MNRAS 1977, 179, 433–456. https://doi.org/10.1093/mnras/179.3.433.
- Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. ApJ 2007, 658, 815–828, [arXiv:astro-ph/astro-ph/0604095]. https://doi.org/10.1086/511972.
- Hydromagnetic flows from accretion disks and the production of radio jets. MNRAS 1982, 199, 883–903. https://doi.org/10.1093/mnras/199.4.883.
- Compton heated winds and coronae above accretion disks. I. Dynamics. ApJ 1983, 271, 70–88. https://doi.org/10.1086/161178.
- Hot Accretion Flows Around Black Holes. ARA&A 2014, 52, 529–588, [arXiv:astro-ph.HE/1401.0586]. https://doi.org/10.1146/annurev-astro-082812-141003.
- Active Galactic Nucleus Feedback in an Isolated Elliptical Galaxy: The Effect of Strong Radiative Feedback in the Kinetic Mode. ApJ 2014, 789, 150, [arXiv:astro-ph.GA/1403.0670]. https://doi.org/10.1088/0004-637X/789/2/150.
- Quenching star formation with low-luminosity AGN winds. MNRAS 2023, 526, 217–223, [arXiv:astro-ph.GA/2303.00826]. https://doi.org/10.1093/mnras/stad2673.
- Active galactic nuclei: what’s in a name? A&A Rev. 2017, 25, 2, [arXiv:astro-ph.GA/1707.07134]. https://doi.org/10.1007/s00159-017-0102-9.
- QSO MUSEUM I: a sample of 61 extended Ly α𝛼\alphaitalic_α-emission nebulae surrounding z ∼similar-to\sim∼ 3 quasars. MNRAS 2019, 482, 3162–3205, [arXiv:astro-ph.GA/1808.10857]. https://doi.org/10.1093/mnras/sty2827.
- AGN-driven outflows and the formation of Lyα𝛼\alphaitalic_α nebulae around high-z quasars. MNRAS 2022, 517, 1767–1790, [arXiv:astro-ph.GA/2203.11232]. https://doi.org/10.1093/mnras/stac2432.
- Quenching star formation with quasar outflows launched by trapped IR radiation. MNRAS 2018, 479, 2079–2111, [arXiv:astro-ph.GA/1709.08638]. https://doi.org/10.1093/mnras/sty1514.
- Accretion Disk Winds from Active Galactic Nuclei. ApJ 1995, 451, 498. https://doi.org/10.1086/176238.
- Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. ApJ 2000, 543, 686–696, [arXiv:astro-ph/astro-ph/0005315]. https://doi.org/10.1086/317154.
- UV line-driven disc wind as the origin of UltraFast Outflows in AGN. MNRAS 2021, 503, 1442–1458, [arXiv:astro-ph.HE/2003.01137]. https://doi.org/10.1093/mnras/staa3282.
- Simulations of AGN-driven Galactic Outflow Morphology and Content. AJ 2022, 163, 134, [arXiv:astro-ph.GA/2201.08360]. https://doi.org/10.3847/1538-3881/ac4d23.
- Radiative feedback from quasars and the growth of massive black holes in stellar spheroids. MNRAS 2005, 358, 168–180, [arXiv:astro-ph/astro-ph/0411086]. https://doi.org/10.1111/j.1365-2966.2005.08763.x.
- Inverse Compton X-ray signature of AGN feedback. MNRAS 2013, 436, 2346–2351, [arXiv:astro-ph.GA/1306.2636]. https://doi.org/10.1093/mnras/stt1739.
- VLA Observations of Objects in the Palomar Bright Quasar Survey. AJ 1989, 98, 1195. https://doi.org/10.1086/115207.
- Radio-loud and Radio-quiet Active Galactic Nuclei. AJ 1999, 118, 1169–1176, [arXiv:astro-ph/astro-ph/9905322]. https://doi.org/10.1086/301007.
- Fundamental differences in the radio properties of red and blue quasars: evolution strongly favoured over orientation. MNRAS 2019, 488, 3109–3128, [arXiv:astro-ph.GA/1905.12108]. https://doi.org/10.1093/mnras/stz1771.
- Thermal infrared and nonthermal radio : remarkable correlation in disks of galaxies. ApJ 1985, 298, L7–L11. https://doi.org/10.1086/184556.
- The far-infrared/radio correlation as probed by Herschel. A&A 2010, 518, L31, [arXiv:astro-ph.CO/1005.1072]. https://doi.org/10.1051/0004-6361/201014552.
- On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties. MNRAS 2012, 421, 1569–1582, [arXiv:astro-ph.CO/1201.2397]. https://doi.org/10.1111/j.1365-2966.2012.20414.x.
- GOODS-Herschel: radio-excess signature of hidden AGN activity in distant star-forming galaxies. A&A 2013, 549, A59, [arXiv:astro-ph.CO/1210.2521]. https://doi.org/10.1051/0004-6361/201219880.
- The radio loudness of SDSS quasars from the LOFAR Two-metre Sky Survey: ubiquitous jet activity and constraints on star formation. MNRAS 2021, 506, 5888–5907, [arXiv:astro-ph.GA/2107.09141]. https://doi.org/10.1093/mnras/stab1998.
- Candidate Type II Quasars from the Sloan Digital Sky Survey. II. From Radio to X-Rays. AJ 2004, 128, 1002–1016, [arXiv:astro-ph/astro-ph/0406248]. https://doi.org/10.1086/423220.
- Radio-loud and Radio-quiet QSOs. ApJ 2016, 831, 168, [arXiv:astro-ph.GA/1608.04586]. https://doi.org/10.3847/0004-637X/831/2/168.
- Heckman, T.M. An Optical and Radio Survey of the Nuclei of Bright Galaxies - Activity in the Normal Galactic Nuclei. A&A 1980, 87, 152.
- The Central Engines of 19 LINERs as Viewed by Chandra. ApJ 2006, 647, 140–160, [arXiv:astro-ph/astro-ph/0604487]. https://doi.org/10.1086/505296.
- Ho, L.C. Radiatively Inefficient Accretion in Nearby Galaxies. ApJ 2009, 699, 626–637, [arXiv:astro-ph.GA/0906.4104]. https://doi.org/10.1088/0004-637X/699/1/626.
- Observational signatures of galactic winds powered by active galactic nuclei. MNRAS 2015, 447, 3612–3622, [arXiv:astro-ph.GA/1408.5141]. https://doi.org/10.1093/mnras/stu2648.
- The origin of radio emission from radio-quiet active galactic nuclei. Nature Astronomy 2019, 3, 387–396, [arXiv:astro-ph.GA/1902.05917]. https://doi.org/10.1038/s41550-019-0765-4.
- Identifying active galactic nuclei via brightness temperature with sub-arcsecond international LOFAR telescope observations. MNRAS 2022, 515, 5758–5774, [arXiv:astro-ph.GA/2207.13096]. https://doi.org/10.1093/mnras/stac2129.
- The quasar feedback survey: discovering hidden Radio-AGN and their connection to the host galaxy ionized gas. MNRAS 2021, 503, 1780–1797, [arXiv:astro-ph.GA/2103.00014]. https://doi.org/10.1093/mnras/stab549.
- No Small-scale Radio Jets Here: Multiepoch Observations of Radio Continuum Structures in NGC 1068 with the VLBA. ApJ 2023, 953, 87, [arXiv:astro-ph.GA/2306.15047]. https://doi.org/10.3847/1538-4357/ace1f0.
- Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies. MNRAS 2018, 475, 3493–3501, [arXiv:astro-ph.GA/1801.06518]. https://doi.org/10.1093/mnras/sty070.
- Modelling observable signatures of jet-ISM interaction: thermal emission and gas kinematics. MNRAS 2022, 516, 766–786, [arXiv:astro-ph.GA/2203.10251]. https://doi.org/10.1093/mnras/stac2251.
- A unified model for AGN feedback in cosmological simulations of structure formation. MNRAS 2007, 380, 877–900, [arXiv:astro-ph/0705.2238]. https://doi.org/10.1111/j.1365-2966.2007.12153.x.
- A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids. ApJS 2006, 163, 1–49, [arXiv:astro-ph/astro-ph/0506398]. https://doi.org/10.1086/499298.
- Jet-regulated cooling catastrophe. MNRAS 2010, 409, 985–1001, [arXiv:astro-ph.CO/1004.1851]. https://doi.org/10.1111/j.1365-2966.2010.17338.x.
- What shapes the galaxy mass function? Exploring the roles of supernova-driven winds and active galactic nuclei. MNRAS 2012, 422, 2816–2840, [arXiv:astro-ph.CO/1112.2712]. https://doi.org/10.1111/j.1365-2966.2012.20516.x.
- Feedback from supermassive black holes transforms centrals into passive galaxies by ejecting circumgalactic gas. MNRAS 2020, 491, 2939–2952, [arXiv:astro-ph.GA/1904.05904]. https://doi.org/10.1093/mnras/stz3124.
- SUPER. VI. A giant molecular halo around a z∼similar-to\sim∼2 quasar. A&A 2021, 654, L8, [arXiv:astro-ph.GA/2109.02269]. https://doi.org/10.1051/0004-6361/202141611.
- Jet-induced molecular gas excitation and turbulence in the Teacup. A&A 2023, 671, L12, [arXiv:astro-ph.GA/2302.13884]. https://doi.org/10.1051/0004-6361/202345964.
- The Rise of an Ionized Wind in the Narrow-line Seyfert 1 Galaxy Mrk 335 Observed by XMM-Newton and HST. ApJ 2013, 766, 104, [arXiv:astro-ph.CO/1301.5463]. https://doi.org/10.1088/0004-637X/766/2/104.
- Unification of X-ray winds in Seyfert galaxies: from ultra-fast outflows to warm absorbers. MNRAS 2013, 430, 1102–1117, [arXiv:astro-ph.HE/1212.4851]. https://doi.org/10.1093/mnras/sts692.
- Multiphase Powerful Outflows Detected in High-z Quasars. ApJ 2021, 920, 24, [arXiv:astro-ph.GA/2106.14907]. https://doi.org/10.3847/1538-4357/ac0ef2.
- Active Galactic Nuclei Disk Winds, Absorption Lines, and Warm Absorbers. ApJ 1995, 454, L105. https://doi.org/10.1086/309775.
- C IV λ𝜆\lambdaitalic_λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei. ApJ 2007, 666, 757–777, [arXiv:astro-ph/0705.1895]. https://doi.org/10.1086/519916.
- Outflowing Galactic Winds in Post-starburst and Active Galactic Nucleus Host Galaxies at 0.2 < z < 0.8. ApJ 2011, 743, 46, [arXiv:astro-ph.CO/1104.0681]. https://doi.org/10.1088/0004-637X/743/1/46.
- The Lyα𝛼\alphaitalic_α Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage. ApJ 2015, 803, 6, [arXiv:astro-ph.GA/1501.05946]. https://doi.org/10.1088/0004-637X/803/1/6.
- Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population. MNRAS 2014, 441, 3306–3347, [arXiv:astro-ph.GA/1403.3086]. https://doi.org/10.1093/mnras/stu515.
- Ionized outflows in luminous type 2 AGNs at z < 0.6: no evidence for significant impact on the host galaxies. MNRAS 2016, 460, 130–162, [arXiv:astro-ph.GA/1604.04577]. https://doi.org/10.1093/mnras/stw901.
- The Sins/zC-Sinf Survey of z ~2 Galaxy Kinematics: Evidence for Powerful Active Galactic Nucleus-Driven Nuclear Outflows in Massive Star-Forming Galaxies. ApJ 2014, 787, 38, [arXiv:astro-ph.CO/1311.2596]. https://doi.org/10.1088/0004-637X/787/1/38.
- The KMOS3D3𝐷{}^{3D}start_FLOATSUPERSCRIPT 3 italic_D end_FLOATSUPERSCRIPT Survey: Demographics and Properties of Galactic Outflows at z = 0.6-2.7. ApJ 2019, 875, 21, [arXiv:astro-ph.GA/1807.04738]. https://doi.org/10.3847/1538-4357/ab0ca2.
- Quantifying the AGN-driven outflows in ULIRGs (QUADROS)–I: VLT/Xshooter observations of nine nearby objects. Monthly Notices of the Royal Astronomical Society 2018, 474, 128–156.
- Identifying the subtle signatures of feedback from distant AGN using ALMA observations and the EAGLE hydrodynamical simulations. MNRAS 2018, 475, 1288–1305. https://doi.org/10.1093/mnras/stx3177.
- KASHz: No evidence for ionised outflows instantaneously suppressing star formation in moderate luminosity AGN at z ∼similar-to\sim∼ 1.4-2.6. MNRAS 2020, 492, 3194–3216, [arXiv:astro-ph.GA/2001.02242]. https://doi.org/10.1093/mnras/staa030.
- Breaking the Obscuring Screen: A Resolved Molecular Outflow in a Buried QSO. ApJ 2013, 775, L15, [arXiv:astro-ph.CO/1308.4988]. https://doi.org/10.1088/2041-8205/775/1/L15.
- A near-infrared study of the multiphase outflow in the type-2 quasar J1509+0434. MNRAS 2019, 487, L18–L23, [arXiv:astro-ph.GA/1905.06288]. https://doi.org/10.1093/mnrasl/slz072.
- Warm molecular and ionized gas kinematics in the type-2 quasar J0945+1737. A&A 2022, 665, A55, [arXiv:astro-ph.GA/2206.15347]. https://doi.org/10.1051/0004-6361/202243585.
- The AGNIFS survey: spatially resolved observations of hot molecular and ionized outflows in nearby active galaxies. MNRAS 2023, 521, 1832–1848, [arXiv:astro-ph.GA/2302.11324]. https://doi.org/10.1093/mnras/stad599.
- Fast neutral outflows in powerful radio galaxies: a major source of feedback in massive galaxies. A&A 2005, 444, L9–L13, [arXiv:astro-ph/astro-ph/0510263]. https://doi.org/10.1051/0004-6361:200500197.
- Another piece of the puzzle: The fast H I outflow in Mrk 231. A&A 2016, 593, A30, [arXiv:astro-ph.GA/1606.01640]. https://doi.org/10.1051/0004-6361/201628978.
- Outflows in Active Galactic Nucleus/Starburst-Composite Ultraluminous Infrared Galaxies1,. ApJ 2005, 632, 751–780, [arXiv:astro-ph/astro-ph/0507037]. https://doi.org/10.1086/444451.
- Neutral gas outflows in nearby [U]LIRGs via optical NaD feature. A&A 2016, 590, A125, [arXiv:astro-ph.GA/1602.08505]. https://doi.org/10.1051/0004-6361/201526788.
- Two-face(s): ionized and neutral gas winds in the local Universe. A&A 2019, 622, A188, [arXiv:astro-ph.GA/1710.08423]. https://doi.org/10.1051/0004-6361/201732152.
- Evidence of strong quasar feedback in the early Universe. MNRAS 2012, 425, L66–L70, [arXiv:astro-ph.CO/1204.2904]. https://doi.org/10.1111/j.1745-3933.2012.01303.x.
- Widespread QSO-driven outflows in the early Universe. A&A 2019, 630, A59, [arXiv:astro-ph.GA/1806.00786]. https://doi.org/10.1051/0004-6361/201833557.
- Turbulent and fast motions of H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT gas in active galactic nuclei. A&A 2011, 533, L10, [arXiv:astro-ph.CO/1108.2888]. https://doi.org/10.1051/0004-6361/201117730.
- Active galactic nuclei winds as the origin of the H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT emission excess in nearby galaxies. MNRAS 2020, 491, 1518–1529, [arXiv:astro-ph.GA/1909.11742]. https://doi.org/10.1093/mnras/stz3137.
- Massive Molecular Outflows and Negative Feedback in ULIRGs Observed by Herschel-PACS. ApJ 2011, 733, L16, [arXiv:astro-ph.CO/1105.1731]. https://doi.org/10.1088/2041-8205/733/1/L16.
- Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel. ApJ 2013, 776, 27, [arXiv:astro-ph.CO/1308.3139]. https://doi.org/10.1088/0004-637X/776/1/27.
- Diagnostics of AGN-Driven Molecular Outflows in ULIRGs from Herschel-PACS Observations of OH at 119 μ𝜇\muitalic_μm. ApJ 2013, 775, 127, [arXiv:astro-ph.CO/1307.6224]. https://doi.org/10.1088/0004-637X/775/2/127.
- Molecular Outflows in Local ULIRGs: Energetics from Multitransition OH Analysis. ApJ 2017, 836, 11, [arXiv:astro-ph.GA/1612.08181]. https://doi.org/10.3847/1538-4357/836/1/11.
- Quasar feedback revealed by giant molecular outflows. A&A 2010, 518, L155, [arXiv:astro-ph.CO/1006.1655]. https://doi.org/10.1051/0004-6361/201015164.
- Massive molecular outflows and evidence for AGN feedback from CO observations. A&A 2014, 562, A21, [arXiv:astro-ph.CO/1311.2595]. https://doi.org/10.1051/0004-6361/201322464.
- Spatially resolved cold molecular outflows in ULIRGs. A&A 2018, 616, A171, [arXiv:astro-ph.GA/1805.03667]. https://doi.org/10.1051/0004-6361/201833089.
- Cold molecular outflows in the local Universe and their feedback effect on galaxies. MNRAS 2019, 483, 4586–4614, [arXiv:astro-ph.GA/1805.05352]. https://doi.org/10.1093/mnras/sty3449.
- Physics of ULIRGs with MUSE and ALMA: The PUMA project. IV. No tight relation between cold molecular outflow rates and AGN luminosities. A&A 2022, 668, A45, [arXiv:astro-ph.GA/2209.03380]. https://doi.org/10.1051/0004-6361/202244054.
- The diverse cold molecular gas contents, morphologies, and kinematics of type-2 quasars as seen by ALMA. A&A 2022, 658, A155, [arXiv:astro-ph.GA/2111.13578]. https://doi.org/10.1051/0004-6361/202141906.
- Evidence of extended cold molecular gas and dust haloes around z 2.3 extremely red quasars with ALMA. MNRAS 2023, 519, 5246–5262, [arXiv:astro-ph.GA/2212.03270]. https://doi.org/10.1093/mnras/stac3787.
- The largely unconstrained multiphase nature of outflows in AGN host galaxies. Nature Astronomy 2018, 2, 176–178, [arXiv:astro-ph.GA/1802.10308]. https://doi.org/10.1038/s41550-018-0406-3.
- Quasar-mode Feedback in Nearby Type 1 Quasars: Ubiquitous Kiloparsec-scale Outflows and Correlations with Black Hole Properties. ApJ 2017, 850, 40, [arXiv:astro-ph.GA/1708.05139]. https://doi.org/10.3847/1538-4357/aa94d1.
- Properties of the multiphase outflows in local (ultra)luminous infrared galaxies. MNRAS 2021, 505, 5753–5783, [arXiv:astro-ph.GA/2006.13232]. https://doi.org/10.1093/mnras/stab1666.
- Multiphase characterization of AGN winds in five local type-2 quasars. A&A 2024, 681, A63, [arXiv:astro-ph.GA/2311.10132]. https://doi.org/10.1051/0004-6361/202347715.
- Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the “Quasar Era”. A&A 2008, 491, 407–424, [arXiv:astro-ph/0809.5171]. https://doi.org/10.1051/0004-6361:200810346.
- Ionised outflows in z ~2.4 quasar host galaxies. A&A 2015, 580, A102, [arXiv:astro-ph.GA/1506.03096]. https://doi.org/10.1051/0004-6361/201526557.
- SUPER. II. Spatially resolved ionised gas kinematics and scaling relations in z ∼similar-to\sim∼ 2 AGN host galaxies. A&A 2020, 642, A147, [arXiv:astro-ph.GA/2008.01728]. https://doi.org/10.1051/0004-6361/202038551.
- Powerful winds in high-redshift obscured and red quasars. MNRAS 2021, 504, 4445–4459, [arXiv:astro-ph.GA/2101.04688]. https://doi.org/10.1093/mnras/stab1176.
- Being KLEVER at cosmic noon: Ionized gas outflows are inconspicuous in low-mass star-forming galaxies but prominent in massive AGN hosts. MNRAS 2022, 513, 2535–2562, [arXiv:astro-ph.GA/2203.11958]. https://doi.org/10.1093/mnras/stac1026.
- First Results from the JWST Early Release Science Program Q3D: Turbulent Times in the Life of a z 3 Extremely Red Quasar Revealed by NIRSpec IFU. ApJ 2022, 940, L7, [arXiv:astro-ph.GA/2210.10074]. https://doi.org/10.3847/2041-8213/ac98c3.
- First Results from the JWST Early Release Science Program Q3D: Powerful Quasar-driven Galactic Scale Outflow at z = 3. ApJ 2024, 960, 126, [arXiv:astro-ph.GA/2307.13751]. https://doi.org/10.3847/1538-4357/ad0be9.
- Very extended cold gas, star formation and outflows in the halo of a bright quasar at z > 6. A&A 2015, 574, A14, [arXiv:astro-ph.GA/1409.4418]. https://doi.org/10.1051/0004-6361/201424980.
- Red quasars blow out molecular gas from galaxies during the peak of cosmic star formation. MNRAS 2022, 517, 3377–3391, [arXiv:astro-ph.GA/2207.09484]. https://doi.org/10.1093/mnras/stac2765.
- An ALMA [C II] Survey of 27 Quasars at z > 5.94. ApJ 2018, 854, 97, [arXiv:astro-ph.GA/1801.02641]. https://doi.org/10.3847/1538-4357/aaa5aa.
- No Evidence for [C II] Halos or High-velocity Outflows in z ≳greater-than-or-equivalent-to\gtrsim≳ 6 Quasar Host Galaxies. ApJ 2020, 904, 131, [arXiv:astro-ph.GA/2010.14875]. https://doi.org/10.3847/1538-4357/abc33f.
- Molecular and Ionized Gas Phases of an AGN-driven Outflow in a Typical Massive Galaxy at z ≈\approx≈ 2. ApJ 2019, 871, 37, [arXiv:astro-ph.GA/1807.07074]. https://doi.org/10.3847/1538-4357/aaf6a7.
- A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z=3. arXiv e-prints 2023, p. arXiv:2308.06317, [arXiv:astro-ph.GA/2308.06317]. https://doi.org/10.48550/arXiv.2308.06317.
- Multiphase Outflows in High-redshift Quasar Host Galaxies. ApJ 2021, 923, 59, [arXiv:astro-ph.GA/2110.00019]. https://doi.org/10.3847/1538-4357/ac2b9e.
- Half-megasecond Chandra Spectral Imaging of the Hot Circumgalactic Nebula around Quasar Mrk 231. ApJ 2014, 790, 116, [arXiv:astro-ph.GA/1405.4833]. https://doi.org/10.1088/0004-637X/790/2/116.
- Extended X-Ray Emission from a Quasar-driven Superbubble. ApJ 2014, 788, 54, [arXiv:astro-ph.GA/1404.4875]. https://doi.org/10.1088/0004-637X/788/1/54.
- Storm in a Teacup: X-Ray View of an Obscured Quasar and Superbubble. ApJ 2018, 856, L1, [arXiv:astro-ph.GA/1803.00009]. https://doi.org/10.3847/2041-8213/aab357.
- Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action. Science 2013, 341, 1082–1085, [arXiv:astro-ph.CO/1309.1240]. https://doi.org/10.1126/science.1240436.
- The evolution of galaxies and clusters at high spatial resolution with AXIS. arXiv e-prints 2023, p. arXiv:2311.07661, [arXiv:astro-ph.IM/2311.07661]. https://doi.org/10.48550/arXiv.2311.07661.
- Constraining Gas Motions in the Intra-Cluster Medium. Space Sci. Rev. 2019, 215, 24, [arXiv:astro-ph.CO/1902.00024]. https://doi.org/10.1007/s11214-019-0590-1.
- Detecting the halo heating from AGN feedback with ALMA. MNRAS 2019, 490, 5134–5146, [arXiv:astro-ph.GA/1910.02088]. https://doi.org/10.1093/mnras/stz2945.
- Richter, P. Hot Gas in Galaxy Halos Traced by Coronal Broad Lyα𝛼\alphaitalic_α Absorbers. ApJ 2020, 892, 33, [arXiv:astro-ph.GA/2002.10486]. https://doi.org/10.3847/1538-4357/ab7937.
- Unravelling the physics of multiphase AGN winds through emission line tracers. MNRAS 2021, 503, 1568–1585, [arXiv:astro-ph.GA/2012.06592]. https://doi.org/10.1093/mnras/stab556.
- AGN wind scaling relations and the co-evolution of black holes and galaxies. A&A 2017, 601, A143, [arXiv:astro-ph.GA/1702.04507]. https://doi.org/10.1051/0004-6361/201629478.
- The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. A&A 2015, 583, A99, [arXiv:astro-ph.GA/1503.01481]. https://doi.org/10.1051/0004-6361/201526020.
- Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. A&A 2014, 567, A125, [arXiv:astro-ph.GA/1405.7706]. https://doi.org/10.1051/0004-6361/201423843.
- The Kiloparsec-scale Neutral Atomic Carbon Outflow in the Nearby Type 2 Seyfert Galaxy NGC 1068: Evidence for Negative AGN Feedback. ApJ 2022, 927, L32, [arXiv:astro-ph.GA/2203.01355]. https://doi.org/10.3847/2041-8213/ac59ae.
- Jet acceleration of the fast molecular outflows in the Seyfert galaxy IC 5063. Nature 2014, 511, 440–443, [arXiv:astro-ph.GA/1407.1332]. https://doi.org/10.1038/nature13520.
- The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. A&A 2015, 580, A1, [arXiv:astro-ph.GA/1505.07190]. https://doi.org/10.1051/0004-6361/201525860.
- Blandford-Znajek jets in galaxy formation simulations: method and implementation. MNRAS 2021, 504, 3619–3650, [arXiv:astro-ph.GA/2011.10580]. https://doi.org/10.1093/mnras/stab804.
- Blandford-Znajek jets in galaxy formation simulations: exploring the diversity of outflows produced by spin-driven AGN jets in Seyfert galaxies. MNRAS 2022, 514, 4535–4559, [arXiv:astro-ph.GA/2111.01801]. https://doi.org/10.1093/mnras/stac1566.
- Gas rotation, shocks and outflow within the inner 3 kpc of the radio galaxy 3C 33. MNRAS 2017, 469, 1573–1586, [arXiv:astro-ph.GA/1704.06343]. https://doi.org/10.1093/mnras/stx962.
- The MURALES survey. II. Presentation of MUSE observations of 20 3C low-z radio galaxies and first results. A&A 2019, 632, A124, [arXiv:astro-ph.GA/1903.10768]. https://doi.org/10.1051/0004-6361/201935544.
- The MURALES survey. VI. Properties and origin of the extended line emission structures in radio galaxies. A&A 2022, 662, A23, [arXiv:astro-ph.GA/2204.00528]. https://doi.org/10.1051/0004-6361/202142823.
- Quasar feedback survey: multiphase outflows, turbulence, and evidence for feedback caused by low power radio jets inclined into the galaxy disc. MNRAS 2022, 512, 1608–1628, [arXiv:astro-ph.GA/2201.02208]. https://doi.org/10.1093/mnras/stac073.
- Complex AGN feedback in the Teacup galaxy. A powerful ionised galactic outflow, jet-ISM interaction, and evidence for AGN-triggered star formation in a giant bubble. A&A 2023, 678, A127, [arXiv:astro-ph.GA/2309.02498]. https://doi.org/10.1051/0004-6361/202347375.
- Revolutionizing Our Understanding of AGN Feedback and its Importance to Galaxy Evolution in the Era of the Next Generation Very Large Array. ApJ 2018, 859, 23, [arXiv:astro-ph.GA/1803.02357]. https://doi.org/10.3847/1538-4357/aab3d1.
- Storm in a “Teacup”: A Radio-quiet Quasar with ≈\approx≈10 kpc Radio-emitting Bubbles and Extreme Gas Kinematics. ApJ 2015, 800, 45, [arXiv:astro-ph.GA/1410.4198]. https://doi.org/10.1088/0004-637X/800/1/45.
- Quasar feedback survey: molecular gas affected by central outflows and by 10 kpc radio lobes reveal dual feedback effects in ’radio quiet’ quasars. MNRAS 2023, [arXiv:astro-ph.GA/2311.03453]. https://doi.org/10.1093/mnras/stad3453.
- Bubbles and outflows: The novel JWST/NIRSpec view of the z = 1.59 obscured quasar XID2028. A&A 2023, 672, A128, [arXiv:astro-ph.GA/2301.11060]. https://doi.org/10.1051/0004-6361/202346001.
- First Results from the JWST Early Release Science Program Q3D: The Warm Ionized Gas Outflow in z 1.6 Quasar XID 2028 and Its Impact on the Host Galaxy. ApJ 2023, 953, 56, [arXiv:astro-ph.GA/2303.08952]. https://doi.org/10.3847/1538-4357/ace10f.
- Galaxy-scale AGN feedback - theory. Astronomische Nachrichten 2016, 337, 167, [arXiv:astro-ph.GA/1510.03594]. https://doi.org/10.1002/asna.201512287.
- The Role of Infrared Radiation Pressure in Shaping Dusty Winds in AGNs. ApJ 2020, 900, 174, [arXiv:astro-ph.GA/2007.13554]. https://doi.org/10.3847/1538-4357/aba89f.
- FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust. ApJ 2012, 757, 51, [arXiv:astro-ph.CO/1207.2175]. https://doi.org/10.1088/0004-637X/757/1/51.
- Heavily reddened type 1 quasars at z > 2 - I. Evidence for significant obscured black hole growth at the highest quasar luminosities. MNRAS 2015, 447, 3368–3389, [arXiv:astro-ph.GA/1501.00815]. https://doi.org/10.1093/mnras/stu2649.
- Dense stellar clump formation driven by strong quasar winds in the FIRE cosmological hydrodynamic simulations. arXiv e-prints 2023, p. arXiv:2310.19863, [arXiv:astro-ph.GA/2310.19863]. https://doi.org/10.48550/arXiv.2310.19863.
- An Accreting Supermassive Black Hole Irradiating Molecular Gas in NGC 2110. ApJ 2019, 875, L8, [arXiv:astro-ph.GA/1903.07637]. https://doi.org/10.3847/2041-8213/ab1262.
- Multiphase Gas Flows in the Nearby Seyfert Galaxy ESO428-G014. Paper I. ApJ 2020, 890, 29, [arXiv:astro-ph.GA/1904.01483]. https://doi.org/10.3847/1538-4357/ab67bd.
- Spatially resolved evidence of the impact of quasar-driven outflows on recent star formation: the case of Mrk 34. Monthly Notices of the Royal Astronomical Society: Letters 2022, 512, L54–L59.
- Investigating the impact of quasar-driven outflows on galaxies at z ∼similar-to\sim∼ 0.3-0.4. A&A 2023, 680, A71, [arXiv:astro-ph.GA/2309.10572]. https://doi.org/10.1051/0004-6361/202347756.
- Whittle, M. The narrow line region of active galaxies–I. Nuclear [O III] profiles. Monthly Notices of the Royal Astronomical Society 1985, 213, 1–31.
- The MURALES survey-IV. Searching for nuclear outflows in 3C radio galaxies at z< 0.3 with MUSE observations. Astronomy & Astrophysics 2021, 653, A150.
- ALMA captures feeding and feedback from the active galactic nucleus in NGC 613. A&A 2019, 632, A33, [arXiv:astro-ph.GA/1905.01979]. https://doi.org/10.1051/0004-6361/201935845.
- Searching for molecular gas inflows and outflows in the nuclear regions of five Seyfert galaxies. A&A 2020, 643, A127, [arXiv:astro-ph.GA/2003.05663]. https://doi.org/10.1051/0004-6361/201936961.
- Large-scale outflows in luminous QSOs revisited. The impact of beam smearing on AGN feedback efficiencies. A&A 2016, 594, A44, [arXiv:astro-ph.GA/1512.05595]. https://doi.org/10.1051/0004-6361/201527992.
- Molecular outflows in local galaxies: Method comparison and a role of intermittent AGN driving. A&A 2020, 633, A134, [arXiv:astro-ph.GA/1911.05608]. https://doi.org/10.1051/0004-6361/201936803.
- The CO-to-H22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT Conversion Factor. ARA&A 2013, 51, 207–268, [arXiv:astro-ph.GA/1301.3498]. https://doi.org/10.1146/annurev-astro-082812-140944.
- Netzer, H. Bolometric correction factors for active galactic nuclei. MNRAS 2019, 488, 5185–5191, [arXiv:astro-ph.GA/1907.09534]. https://doi.org/10.1093/mnras/stz2016.
- Measuring the kinetic power of active galactic nuclei in the radio mode. MNRAS 2007, 381, 589–601, [arXiv:astro-ph/0707.3356]. https://doi.org/10.1111/j.1365-2966.2007.12253.x.
- Radiative Efficiency and Content of Extragalactic Radio Sources: Toward a Universal Scaling Relation between Jet Power and Radio Power. ApJ 2008, 686, 859–880, [arXiv:astro-ph/0806.1929]. https://doi.org/10.1086/591416.
- A Relationship Between AGN Jet Power and Radio Power. ApJ 2010, 720, 1066–1072, [arXiv:astro-ph.CO/1006.5699]. https://doi.org/10.1088/0004-637X/720/2/1066.
- LOFAR MSSS: The scaling relation between AGN cavity power and radio luminosity at low radio frequencies. A&A 2017, 605, A48, [arXiv:astro-ph.GA/1706.00225]. https://doi.org/10.1051/0004-6361/201730940.
- Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal. MNRAS 2018, 476, 1614–1623, [arXiv:astro-ph.GA/1801.10172]. https://doi.org/10.1093/mnras/sty274.
- Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 2005, 433, 604–607, [arXiv:astro-ph/astro-ph/0502199]. https://doi.org/10.1038/nature03335.
- The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. MNRAS 2015, 450, 1937–1961, [arXiv:astro-ph.GA/1501.01311]. https://doi.org/10.1093/mnras/stv725.
- Which Came First: Supermassive Black Holes or Galaxies? Insights from JWST. ApJ 2024, 961, L39, [arXiv:astro-ph.GA/2401.02482]. https://doi.org/10.3847/2041-8213/ad1bf0.
- Stellar population synthesis at the resolution of 2003. MNRAS 2003, 344, 1000–1028, [arXiv:astro-ph/astro-ph/0309134]. https://doi.org/10.1046/j.1365-8711.2003.06897.x.
- Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? ApJ 2004, 613, 986–1003, [arXiv:astro-ph/astro-ph/0406183]. https://doi.org/10.1086/423237.
- Deep ALMA photometry of distant X-ray AGN: improvements in star formation rate constraints, and AGN identification. MNRAS 2018, 478, 3721–3739, [arXiv:astro-ph.GA/1712.02363]. https://doi.org/10.1093/mnras/sty1044.
- The impact of ionized outflows from z 2.5 quasars is not through instantaneous in situ quenching: the evidence from ALMA and VLT/SINFONI. MNRAS 2021, 505, 5469–5487, [arXiv:astro-ph.GA/2106.05277]. https://doi.org/10.1093/mnras/stab1631.
- SUPER. V. ALMA continuum observations of z ∼similar-to\sim∼ 2 AGN and the elusive evidence of outflows influencing star formation. A&A 2021, 654, A90, [arXiv:astro-ph.GA/2109.02674]. https://doi.org/10.1051/0004-6361/202141363.
- Tracing Polycyclic Aromatic Hydrocarbons and Warm Dust Emission in the Seyfert Galaxy NGC 1068. AJ 2007, 134, 2086–2097, [arXiv:astro-ph/0707.3440]. https://doi.org/10.1086/521821.
- PAH features within few hundred parsecs of active galactic nuclei. MNRAS 2017, 470, 3071–3094, [arXiv:astro-ph.GA/1706.04811]. https://doi.org/10.1093/mnras/stx1447.
- Young stellar populations in type II quasars: timing the onset of star formation and nuclear activity. MNRAS 2017, 466, 3887–3917, [arXiv:astro-ph.GA/1612.01549]. https://doi.org/10.1093/mnras/stw3175.
- The nebular contribution to the extended UV continua of powerful radio galaxies. MNRAS 1995, 273, L29–L33. https://doi.org/10.1093/mnras/273.1.L29.
- Mid-Infrared Spectra of Optically-Selected Type 2 Quasars. AJ 2008, 136, 1607–1622, [arXiv:astro-ph/0808.1893]. https://doi.org/10.1088/0004-6256/136/4/1607.
- The Mid-Infrared Continua of Seyfert Galaxies. ApJ 2009, 705, 14–31, [arXiv:astro-ph.CO/0910.1614]. https://doi.org/10.1088/0004-637X/705/1/14.
- The Relationship between Black Hole Growth and Star Formation in Seyfert Galaxies. ApJ 2012, 746, 168, [arXiv:astro-ph.CO/1106.3565]. https://doi.org/10.1088/0004-637X/746/2/168.
- Polycyclic aromatic hydrocarbon in the central region of the Seyfert 2 galaxy NGC 1808. MNRAS 2013, 429, 2634–2642, [arXiv:astro-ph.GA/1212.1357]. https://doi.org/10.1093/mnras/sts542.
- Nuclear 11.3 μ𝜇\muitalic_μm PAH emission in local active galactic nuclei. MNRAS 2014, 443, 2766–2782, [arXiv:astro-ph.GA/1407.1154]. https://doi.org/10.1093/mnras/stu1293.
- Nuclear Star Formation Activity and Black Hole Accretion in Nearby Seyfert Galaxies. ApJ 2014, 780, 86, [arXiv:astro-ph.CO/1311.0703]. https://doi.org/10.1088/0004-637X/780/1/86.
- A mid-infrared view of the inner parsecs of the Seyfert galaxy Mrk 1066 using CanariCam/GTC. MNRAS 2014, 445, 1130–1143, [arXiv:astro-ph.GA/1409.0674]. https://doi.org/10.1093/mnras/stu1756.
- Circumnuclear Star Formation and AGN Activity: Clues from Surface Brightness Radial Profile of PAHs and [S IV]. ApJ 2018, 859, 124, [arXiv:astro-ph.GA/1804.07311]. https://doi.org/10.3847/1538-4357/aabcbc.
- The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission. ApJ 2007, 656, 770–791, [arXiv:astro-ph/astro-ph/0610913]. https://doi.org/10.1086/510549.
- The Effect of Active Galactic Nuclei on the Mid-infrared Aromatic Features. ApJ 2010, 724, 140–153, [arXiv:astro-ph.CO/1009.2752]. https://doi.org/10.1088/0004-637X/724/1/140.
- Polycyclic aromatic hydrocarbons in Seyfert and star-forming galaxies. MNRAS 2022, 509, 4256–4275, [arXiv:astro-ph.GA/2011.10882]. https://doi.org/10.1093/mnras/stab3127.
- Quantifying Star Formation Activity in the Inner 1 kpc of Local MIR Bright QSOs. ApJ 2019, 871, 190. https://doi.org/10.3847/1538-4357/aafa18.
- The Ionization and Destruction of Polycyclic Aromatic Hydrocarbons in Powerful Quasars. ApJ 2022, 925, 218, [arXiv:astro-ph.GA/2110.09705]. https://doi.org/10.3847/1538-4357/ac32e2.
- Absence of nuclear polycyclic aromatic hydrocarbon emission from a compact starburst: The case of the type-2 quasar Mrk 477. A&A 2023, 669, L5, [arXiv:astro-ph.GA/2212.01258]. https://doi.org/10.1051/0004-6361/202245409.
- A high angular resolution view of the PAH emission in Seyfert galaxies using JWST/MRS data. A&A 2022, 666, L5, [arXiv:astro-ph.GA/2208.11620]. https://doi.org/10.1051/0004-6361/202244806.
- GOALS-JWST: Tracing AGN Feedback on the Star-forming Interstellar Medium in NGC 7469. ApJ 2022, 941, L36, [arXiv:astro-ph.GA/2209.06741]. https://doi.org/10.3847/2041-8213/ac9ebf.
- GOALS-JWST: Small Neutral Grains and Enhanced 3.3 μ𝜇\muitalic_μm PAH Emission in the Seyfert Galaxy NGC 7469. ApJ 2023, 957, L26, [arXiv:astro-ph.GA/2307.15169]. https://doi.org/10.3847/2041-8213/ad0387.
- Silk, J. Unleashing Positive Feedback: Linking the Rates of Star Formation, Supermassive Black Hole Accretion, and Outflows in Distant Galaxies. ApJ 2013, 772, 112, [arXiv:astro-ph.CO/1305.5840]. https://doi.org/10.1088/0004-637X/772/2/112.
- Do AGN outflows quench or enhance star formation? MNRAS 2017, 468, 4956–4967, [arXiv:astro-ph.GA/1703.10782]. https://doi.org/10.1093/mnras/stx787.
- Hydrodynamic simulations of the disc of gas around supermassive black holes (HDGAS) - I. Molecular gas dynamics. MNRAS 2023, 524, 786–800, [arXiv:astro-ph.GA/2306.14573]. https://doi.org/10.1093/mnras/stad1957.
- The MAGNUM survey: positive feedback in the nuclear region of NGC 5643 suggested by MUSE. A&A 2015, 582, A63, [arXiv:astro-ph.GA/1508.04464]. https://doi.org/10.1051/0004-6361/201526581.
- Inefficient jet-induced star formation in Centaurus A. High resolution ALMA observations of the northern filaments. A&A 2017, 608, A98, [arXiv:astro-ph.GA/1710.09851]. https://doi.org/10.1051/0004-6361/201731429.
- Fast outflows and star formation quenching in quasar host galaxies. A&A 2016, 591, A28, [arXiv:astro-ph.GA/1604.04290]. https://doi.org/10.1051/0004-6361/201528037.
- Positive and Negative Feedback of AGN Outflows in NGC 5728. ApJ 2019, 881, 147, [arXiv:astro-ph.GA/1907.00982]. https://doi.org/10.3847/1538-4357/ab2e72.
- The impact of AGN wind feedback in simulations of isolated galaxies with a multiphase ISM. MNRAS 2020, 497, 5292–5308. https://doi.org/10.1093/mnras/staa2222.
- SDSS IV MaNGA - Properties of AGN Host Galaxies. Rev. Mexicana Astron. Astrofis. 2018, 54, 217–260, [arXiv:astro-ph.GA/1709.05438]. https://doi.org/10.48550/arXiv.1709.05438.
- The EDGE-CALIFA survey: central molecular gas depletion in AGN host galaxies - a smoking gun for quenching? MNRAS 2021, 505, L46–L51, [arXiv:astro-ph.GA/2105.02916]. https://doi.org/10.1093/mnrasl/slab047.
- Active Galactic Nuclei Feedback in SDSS-IV MaNGA: AGNs Have Suppressed Central Star Formation Rates. ApJ 2023, 953, 26, [arXiv:astro-ph.GA/2212.00762]. https://doi.org/10.3847/1538-4357/acdd57.
- ALMA images the many faces of the <ASTROBJ>NGC 1068</ASTROBJ> torus and its surroundings. A&A 2019, 632, A61, [arXiv:astro-ph.GA/1909.00675]. https://doi.org/10.1051/0004-6361/201936606.
- The AGN fuelling/feedback cycle in nearby radio galaxies - IV. Molecular gas conditions and jet-ISM interaction in NGC 3100. MNRAS 2022, 510, 4485–4503, [arXiv:astro-ph.GA/2112.00755]. https://doi.org/10.1093/mnras/stab3541.
- Multiphase feedback processes in the Sy2 galaxy NGC 5643. A&A 2021, 645, A21, [arXiv:astro-ph.GA/2009.12385]. https://doi.org/10.1051/0004-6361/202038256.
- Spatially resolved emission lines in galaxies at 4≤z<104𝑧104\leq z<104 ≤ italic_z < 10 from the JADES survey: evidence for enhanced central star formation. arXiv e-prints 2024, p. arXiv:2403.08431, [arXiv:astro-ph.GA/2403.08431]. https://doi.org/10.48550/arXiv.2403.08431.
- GA-NIFS: NIRSpec reveals evidence for non-circular motions and AGN feedback in GN20. arXiv e-prints 2024, p. arXiv:2403.03192, [arXiv:astro-ph.GA/2403.03192]. https://doi.org/10.48550/arXiv.2403.03192.
- A ROSAT HRI study of the interaction of the X-ray emitting gas and radio lobes of NGC 1275. MNRAS 1993, 264, L25–L28. https://doi.org/10.1093/mnras/264.1.L25.
- AGN Feedback in Groups and Clusters of Galaxies. In Handbook of X-ray and Gamma-ray Astrophysics; 2022; p. 5. https://doi.org/10.1007/978-981-16-4544-0_122-1.
- AGN-controlled cooling in elliptical galaxies. MNRAS 2006, 368, L67–L71, [arXiv:astro-ph/astro-ph/0602171]. https://doi.org/10.1111/j.1745-3933.2006.00159.x.
- The cosmic history of hot gas cooling and radio active galactic nucleus activity in massive early-type galaxies. MNRAS 2012, 422, 494–509, [arXiv:astro-ph.CO/1202.0041]. https://doi.org/10.1111/j.1365-2966.2012.20626.x.
- X-Ray Cavities in a Sample of 83 SPT-selected Clusters of Galaxies: Tracing the Evolution of AGN Feedback in Clusters of Galaxies out to z=1.2. ApJ 2015, 805, 35, [arXiv:astro-ph.HE/1410.0025]. https://doi.org/10.1088/0004-637X/805/1/35.
- The VLA-COSMOS 3 GHz Large Project: Cosmic evolution of radio AGN and implications for radio-mode feedback since z 5. A&A 2017, 602, A6, [arXiv:astro-ph.GA/1705.07090]. https://doi.org/10.1051/0004-6361/201730685.
- Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies. ApJ 2018, 858, 45, [arXiv:astro-ph.HE/1803.04972]. https://doi.org/10.3847/1538-4357/aabace.
- Radio-loud AGN in the first LoTSS data release. The lifetimes and environmental impact of jet-driven sources. A&A 2019, 622, A12, [arXiv:astro-ph.GA/1811.07943]. https://doi.org/10.1051/0004-6361/201833893.
- A study of high-redshift AGN feedback in SZ cluster samples. MNRAS 2017, 471, 1766–1787, [arXiv:astro-ph.GA/1706.04775]. https://doi.org/10.1093/mnras/stx1505.
- Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: A Topical Perspective. Space Sci. Rev. 2019, 215, 5, [arXiv:astro-ph.GA/1811.05004]. https://doi.org/10.1007/s11214-018-0571-9.
- Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters. MNRAS 2011, 412, 1965–1984, [arXiv:astro-ph.CO/1008.4799]. https://doi.org/10.1111/j.1365-2966.2010.18033.x.
- Ejective and preventative: the IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. MNRAS 2020, 499, 768–792, [arXiv:astro-ph.GA/2004.06132]. https://doi.org/10.1093/mnras/staa2607.
- Cosmological simulations predict that AGN preferentially live in gas-rich, star-forming galaxies despite effective feedback. MNRAS 2022, 514, 2936–2957, [arXiv:astro-ph.GA/2204.13712]. https://doi.org/10.1093/mnras/stac1219.
- CO Emission in Infrared-selected Active Galactic Nuclei. ApJ 2019, 879, 41, [arXiv:astro-ph.GA/1905.06961]. https://doi.org/10.3847/1538-4357/ab223a.
- SUPER. IV. CO(J = 3-2) properties of active galactic nucleus hosts at cosmic noon revealed by ALMA. A&A 2021, 646, A96, [arXiv:astro-ph.GA/2012.07965]. https://doi.org/10.1051/0004-6361/202039270.
- The WISSH quasars project - IX. Cold gas content and environment of luminous QSOs at z 4-4.7. A&A 2021, 645, A33. https://doi.org/10.1051/0004-6361/202039057.
- The Quasar Feedback Survey: characterizing CO excitation in quasar host galaxies. MNRAS 2024, 527, 4420–4439, [arXiv:astro-ph.GA/2310.10235]. https://doi.org/10.1093/mnras/stad3133.
- NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES. ApJ 2013, 771, 63. https://doi.org/10.1088/0004-637X/771/1/63.
- A remarkably flat relationship between the average star formation rate and AGN luminosity for distant X-ray AGN. MNRAS 2015, 453, 591–604. https://doi.org/10.1093/mnras/stv1678.
- Is there any evidence that ionized outflows quench star formation in type 1 quasars at z < 1? A&A 2016, 585, A148, [arXiv:astro-ph.GA/1506.05984]. https://doi.org/10.1051/0004-6361/201526694.
- Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III. ApJ 2017, 839, 120, [arXiv:astro-ph.GA/1702.06681]. https://doi.org/10.3847/1538-4357/aa6894.
- The mean star formation rates of unobscured QSOs: searching for evidence of suppressed or enhanced star formation. MNRAS 2017, 472, 2221–2240, [arXiv:astro-ph.GA/1707.05334]. https://doi.org/10.1093/mnras/stx2121.
- Questions and challenges of what powers galactic outflows in active galactic nuclei. Nature Astronomy 2018, 2, 181–182, [arXiv:astro-ph.GA/1802.10307]. https://doi.org/10.1038/s41550-018-0409-0.
- Testing the Evolutionary Link between Type 1 and Type 2 Quasars with Measurements of the Interstellar Medium. ApJ 2019, 873, 90. https://doi.org/10.3847/1538-4357/ab0555.
- Black Hole Accretion Correlates with Star Formation Rate and Star Formation Efficiency in Nearby Luminous Type 1 Active Galaxies. ApJ 2021, 906, 38. https://doi.org/10.3847/1538-4357/abc94d.
- Determining Star Formation Rates of Active Galactic Nucleus Host Galaxies Based on SED Fitting with Submillimeter Data. ApJ 2022, 928, 73, [arXiv:astro-ph.GA/2202.10044]. https://doi.org/10.3847/1538-4357/ac5407.
- Molecular gas content in obscured AGN at z > 1. A&A 2018, 619, A90, [arXiv:astro-ph.GA/1807.03378]. https://doi.org/10.1051/0004-6361/201833040.
- X-rays across the galaxy population - III. The incidence of AGN as a function of star formation rate. MNRAS 2019, 484, 4360–4378, [arXiv:astro-ph.GA/1810.04683]. https://doi.org/10.1093/mnras/stz125.
- A binning-free method reveals a continuous relationship between galaxies’ AGN power and offset from main sequence. MNRAS 2020, 495, 1392–1402, [arXiv:astro-ph.GA/2001.11573]. https://doi.org/10.1093/mnras/staa1255.
- The nuclear properties and extended morphologies of powerful radio galaxies: the roles of host galaxy and environment. MNRAS 2017, 466, 4346–4363, [arXiv:astro-ph.GA/1701.00919]. https://doi.org/10.1093/mnras/stx007.
- On the quenching of star formation in observed and simulated central galaxies: evidence for the role of integrated AGN feedback. MNRAS 2022, 512, 1052–1090, [arXiv:astro-ph.GA/2112.07672]. https://doi.org/10.1093/mnras/stab3673.
- The Fundamental Signature of Star Formation Quenching from AGN Feedback: A Critical Dependence of Quiescence on Supermassive Black Hole Mass, Not Accretion Rate. ApJ 2023, 944, 108, [arXiv:astro-ph.GA/2301.03677]. https://doi.org/10.3847/1538-4357/acac7c.
- Galaxy quenching at the high redshift frontier: A fundamental test of cosmological models in the early universe with JWST-CEERS. arXiv e-prints 2023, p. arXiv:2311.02526, [arXiv:astro-ph.GA/2311.02526]. https://doi.org/10.48550/arXiv.2311.02526.
- Black-hole-regulated star formation in massive galaxies. Nature 2018, 553, 307–309, [arXiv:astro-ph.GA/1801.00807]. https://doi.org/10.1038/nature24999.
- Anisotropic satellite galaxy quenching modulated by black hole activity. Nature 2021, 594, 187–190, [arXiv:astro-ph.GA/2106.04587]. https://doi.org/10.1038/s41586-021-03545-9.
- Quiescence Correlates Strongly with Directly Measured Black Hole Mass in Central Galaxies. ApJ 2016, 830, L12, [arXiv:astro-ph.GA/1609.07141]. https://doi.org/10.3847/2041-8205/830/1/L12.
- Black Hole Growth, Baryon Lifting, Star Formation, and IllustrisTNG. ApJ 2024, 960, 28, [arXiv:astro-ph.GA/2309.14818]. https://doi.org/10.3847/1538-4357/ad0039.
- Quenching as a Contest between Galaxy Halos and Their Central Black Holes. ApJ 2020, 897, 102, [arXiv:astro-ph.GA/1909.10817]. https://doi.org/10.3847/1538-4357/ab9633.
- Supermassive black holes in cosmological simulations I: MBH𝐵𝐻{}_{BH}start_FLOATSUBSCRIPT italic_B italic_H end_FLOATSUBSCRIPT - M⋆⋆{}_{{\star}}start_FLOATSUBSCRIPT ⋆ end_FLOATSUBSCRIPT relation and black hole mass function. MNRAS 2021, 503, 1940–1975, [arXiv:astro-ph.GA/2006.10094]. https://doi.org/10.1093/mnras/stab496.
- Cosmic evolution of radio-AGN feedback: confronting models with data. MNRAS 2023, 523, 5292–5305, [arXiv:astro-ph.GA/2306.11795]. https://doi.org/10.1093/mnras/stad1813.
- How do central and satellite galaxies quench? - Insights from spatially resolved spectroscopy in the MaNGA survey. MNRAS 2020, 499, 230–268, [arXiv:astro-ph.GA/2009.05341]. https://doi.org/10.1093/mnras/staa2806.
- Searching for the Imprints of AGN Feedback on the Lyman Alpha Forest Around Luminous Red Galaxies. arXiv e-prints 2023, p. arXiv:2311.08470, [arXiv:astro-ph.GA/2311.08470]. https://doi.org/10.48550/arXiv.2311.08470.
- The baryon cycle in modern cosmological hydrodynamical simulations. arXiv e-prints 2024, p. arXiv:2402.08408, [arXiv:astro-ph.GA/2402.08408]. https://doi.org/10.48550/arXiv.2402.08408.
- Radio AGN in nearby dwarf galaxies: the important role of AGN in dwarf galaxy evolution. MNRAS 2022, 511, 4109–4122, [arXiv:astro-ph.GA/2201.09903]. https://doi.org/10.1093/mnras/stac068.
- Near-infrared Coronal Line Observations of Dwarf Galaxies Hosting AGN-driven Outflows. ApJ 2021, 911, 70, [arXiv:astro-ph.GA/2102.08397]. https://doi.org/10.3847/1538-4357/abe70c.
- Two can play at that game: constraining the role of supernova and AGN feedback in dwarf galaxies with cosmological zoom-in simulations. MNRAS 2022, 516, 2112–2141, [arXiv:astro-ph.GA/2206.11274]. https://doi.org/10.1093/mnras/stac2252.
- The role of AGN feedback on the evolution of dwarf galaxies from cosmological simulations: SMBHs suppress star formation in low-mass galaxies. arXiv e-prints 2024, p. arXiv:2402.00929, [arXiv:astro-ph.GA/2402.00929]. https://doi.org/10.48550/arXiv.2402.00929.
- JADES: The incidence rate and properties of galactic outflows in low-mass galaxies across 3 < z < 9. arXiv e-prints 2023, p. arXiv:2306.11801, [arXiv:astro-ph.GA/2306.11801]. https://doi.org/10.48550/arXiv.2306.11801.
- Dissipation of AGN jets in a clumpy interstellar medium. arXiv e-prints 2023, p. arXiv:2401.00446, [arXiv:astro-ph.GA/2401.00446]. https://doi.org/10.48550/arXiv.2401.00446.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.