Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Role of Confidence for Trust-based Resilient Consensus (Extended Version) (2404.07838v1)

Published 11 Apr 2024 in cs.MA, cs.RO, cs.SY, eess.SP, and eess.SY

Abstract: We consider a multi-agent system where agents aim to achieve a consensus despite interactions with malicious agents that communicate misleading information. Physical channels supporting communication in cyberphysical systems offer attractive opportunities to detect malicious agents, nevertheless, trustworthiness indications coming from the channel are subject to uncertainty and need to be treated with this in mind. We propose a resilient consensus protocol that incorporates trust observations from the channel and weighs them with a parameter that accounts for how confident an agent is regarding its understanding of the legitimacy of other agents in the network, with no need for the initial observation window $T_0$ that has been utilized in previous works. Analytical and numerical results show that (i) our protocol achieves a resilient consensus in the presence of malicious agents and (ii) the steady-state deviation from nominal consensus can be minimized by a suitable choice of the confidence parameter that depends on the statistics of trust observations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. L. Ballotta and M. Yemini, “The role of confidence for trust-based resilient consensus,” in American Control Conference, 2024.
  2. H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymptotic consensus in robust networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 4, pp. 766–781, 2013.
  3. J. Usevitch and D. Panagou, “Resilient Leader-Follower Consensus to Arbitrary Reference Values in Time-Varying Graphs,” IEEE Trans. Automat. Contr., vol. 65, no. 4, pp. 1755–1762, Apr. 2020.
  4. Y. Shang, “Resilient consensus in multi-agent systems with state constraints,” Automatica, vol. 122, p. 109288, Dec. 2020.
  5. J. S. Baras and X. Liu, “Trust is the Cure to Distributed Consensus with Adversaries,” in Proc. Mediterr. Conf. Control Autom., Jul. 2019, pp. 195–202.
  6. W. Abbas, A. Laszka, and X. Koutsoukos, “Improving Network Connectivity and Robustness Using Trusted Nodes With Application to Resilient Consensus,” IEEE Trans. Control Netw. Syst., vol. 5, no. 4, pp. 2036–2048, Dec. 2018.
  7. S. Sundaram and B. Gharesifard, “Consensus-based distributed optimization with malicious nodes,” in Proc. Annu. Allerton Conf. Commun. Control Comput., Sep. 2015, pp. 244–249.
  8. Y. Yi, Y. Wang, X. He, S. Patterson, and K. H. Johansson, “A sample-based algorithm for approximately testing r-robustness of a digraph,” in Proc. IEEE Conf. Decis. Control, 2022, pp. 6478–6483.
  9. T. Wheeler, E. Bharathi, and S. Gil, “Switching topology for resilient consensus using wi-fi signals,” in Proc. Int. Conf. Robot. Autom., 2019, pp. 2018–2024.
  10. M. Yemini, A. Nedić, A. J. Goldsmith, and S. Gil, “Characterizing Trust and Resilience in Distributed Consensus for Cyberphysical Systems,” IEEE Trans. Robot., vol. 38, no. 1, pp. 71–91, Feb. 2022.
  11. F. Mallmann-Trenn, M. Cavorsi, and S. Gil, “Crowd vetting: Rejecting adversaries via collaboration with application to multirobot flocking,” IEEE Trans. Robot., vol. 38, no. 1, pp. 5–24, 2022.
  12. M. Yemini, A. Nedić, S. Gil, and A. Goldsmith, “Resilience to malicious activity in distributed optimization for cyberphysical systems,” in Proc. IEEE Conf. Decis. Control, 2022.
  13. M. Yemini, A. Nedić, A. Goldsmith, and S. Gil, “Resilient distributed optimization for multi-agent cyberphysical systems,” arXiv preprints, p. arXiv:2212.02459, 2022.
  14. C. N. Hadjicostis and A. D. Domínguez-García, “Trustworthy distributed average consensus,” in Proc. IEEE Conf. Decis. Control.   IEEE, 2022, pp. 7403–7408.
  15. S. Gil, S. Kumar, M. Mazumder, D. Katabi, and D. Rus, “Guaranteeing spoof-resilient multi-robot networks,” Auton. Robots, vol. 41, pp. 1383–1400, 2017.
  16. A. Tsiamis, K. Gatsis, and G. J. Pappas, “State-secrecy codes for networked linear systems,” IEEE Trans. Autom. Control, vol. 65, no. 5, pp. 2001–2015, 2020.
  17. S. Gil, M. Yemini, A. Chorti, A. Nedić, H. V. Poor, and A. J. Goldsmith, “How physicality enables trust: A new era of trust-centered cyberphysical systems,” arXiv:2311.07492, 2023.
  18. L. Ballotta, G. Como, J. S. Shamma, and L. Schenato, “Can competition outperform collaboration? The role of misbehaving agents,” IEEE Trans. Autom. Control, pp. 1–16, 2023.
  19. S. Gil, S. Kumar, M. Mazumder, D. Katabi, and D. Rus, “Guaranteeing spoof-resilient multi-robot networks,” Autonomous Robots, vol. 41, pp. 1383–1400, 2017.
  20. L. Ballotta, G. Como, J. S. Shamma, and L. Schenato, “Competition-based resilience in distributed quadratic optimization,” in Proc. IEEE Conf. Decis. Control, 2022.
  21. N. E. Friedkin and E. C. Johnsen, “Social influence and opinions,” J. Math. Sociol., vol. 15, no. 3-4, pp. 193–206, 1990.
  22. W. F. Trench, “Conditional convergence of infinite products,” The American Mathematical Monthly, vol. 106, no. 7, pp. 646–651, 1999.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com