Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agent Resilient Consensus under Intermittent Faulty and Malicious Transmissions (Extended Version) (2403.17907v1)

Published 26 Mar 2024 in eess.SY and cs.SY

Abstract: In this work, we consider the consensus problem in which legitimate agents share their values over an undirected communication network in the presence of malicious or faulty agents. Different from the previous works, we characterize the conditions that generalize to several scenarios such as intermittent faulty or malicious transmissions, based on trust observations. As the standard trust aggregation approach based on a constant threshold fails to distinguish intermittent malicious/faulty activity, we propose a new detection algorithm utilizing time-varying thresholds and the random trust values available to legitimate agents. Under these conditions, legitimate agents almost surely determine their trusted neighborhood correctly with geometrically decaying misclassification probabilities. We further prove that the consensus process converges almost surely even in the presence of malicious agents. We also derive the probabilistic bounds on the deviation from the nominal consensus value that would have been achieved with no malicious agents in the system. Numerical results verify the convergence among agents and exemplify the deviation under different scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical association, vol. 69, no. 345, pp. 118–121, 1974.
  2. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.
  3. A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multiagent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, 2009.
  4. A. Nedić and J. Liu, “Distributed optimization for control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp. 77–103, 2018.
  5. S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and S. Martinez, “Tutorial on dynamic average consensus: The problem, its applications, and the algorithms,” IEEE Control Systems Magazine, vol. 39, no. 3, pp. 40–72, 2019.
  6. J. Cortes, S. Martinez, and F. Bullo, “Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions,” IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–1298, 2006.
  7. S. Martinez, “Distributed interpolation schemes for field estimation by mobile sensor networks,” IEEE Transactions on Control Systems Technology, vol. 18, no. 2, pp. 491–500, 2009.
  8. F. Pasqualetti, A. Bicchi, and F. Bullo, “Consensus computation in unreliable networks: A system theoretic approach,” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 90–104, 2011.
  9. S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via linear iterative strategies in the presence of malicious agents,” IEEE Transactions on Automatic Control, vol. 56, no. 7, pp. 1495–1508, 2010.
  10. D. Dolev, “The byzantine generals strike again,” Journal of algorithms, vol. 3, no. 1, pp. 14–30, 1982.
  11. H. J. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram, “Resilient asymptotic consensus in robust networks,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 4, pp. 766–781, 2013.
  12. S. Sundaram and B. Gharesifard, “Distributed optimization under adversarial nodes,” IEEE Transactions on Automatic Control, vol. 64, no. 3, pp. 1063–1076, 2019.
  13. A. S. Rawat, P. Anand, H. Chen, and P. K. Varshney, “Collaborative spectrum sensing in the presence of byzantine attacks in cognitive radio networks,” IEEE Transactions on Signal Processing, vol. 59, no. 2, pp. 774–786, 2011.
  14. S. Gil, S. Kumar, M. Mazumder, D. Katabi, and D. Rus, “Guaranteeing spoof-resilient multi-robot networks,” Autonomous Robots, vol. 41, pp. 1383–1400, 2017.
  15. M. Cavorsi, O. E. Akgün, M. Yemini, A. J. Goldsmith, and S. Gil, “Exploiting trust for resilient hypothesis testing with malicious robots,” in 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023, pp. 7663–7669.
  16. J. Xiong and K. Jamieson, “Securearray: improving wifi security with fine-grained physical-layer information,” in Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, ser. MobiCom ’13.   New York, NY, USA: Association for Computing Machinery, 2013, p. 441–452. [Online]. Available: https://doi.org/10.1145/2500423.2500444
  17. S. Gil, C. Baykal, and D. Rus, “Resilient multi-agent consensus using wi-fi signals,” IEEE Control Systems Letters, vol. 3, no. 1, pp. 126–131, 2019.
  18. S. Gil, M. Yemini, A. Chorti, A. Nedić, H. V. Poor, and A. J. Goldsmith, “How physicality enables trust: A new era of trust-centered cyberphysical systems,” arXiv preprint arXiv:2311.07492, 2023.
  19. M. Yemini, A. Nedić, A. J. Goldsmith, and S. Gil, “Characterizing trust and resilience in distributed consensus for cyberphysical systems,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 71–91, 2021.
  20. E. Nurellari, D. McLernon, and M. Ghogho, “A secure optimum distributed detection scheme in under-attack wireless sensor networks,” IEEE Transactions on Signal and Information Processing over Networks, vol. 4, no. 2, pp. 325–337, 2018.
  21. B. Kailkhura, Y. S. Han, S. Brahma, and P. K. Varshney, “Asymptotic analysis of distributed bayesian detection with byzantine data,” IEEE Signal Processing Letters, vol. 22, no. 5, pp. 608–612, 2015.
  22. O. E. Akgun, A. K. Dayi, S. Gil, and A. Nedich, “Learning trust over directed graphs in multiagent systems,” in Learning for Dynamics and Control Conference.   PMLR, 2023, pp. 142–154.
  23. V. W. Berger and Y. Zhou, “Kolmogorov–smirnov test: Overview,” Wiley statsref: Statistics reference online, 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.