Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

Robustness of voting mechanisms to external information in expectation (2404.07818v1)

Published 11 Apr 2024 in cs.GT

Abstract: Analyses of voting algorithms often overlook informational externalities shaping individual votes. For example, pre-polling information often skews voters towards candidates who may not be their top choice, but who they believe would be a worthwhile recipient of their vote. In this work, we aim to understand the role of external information in voting outcomes. We study this by analyzing (1) the probability that voting outcomes align with external information, and (2) the effect of external information on the total utility across voters, or social welfare. In practice, voting mechanisms elicit coarse information about voter utilities, such as ordinal preferences, which initially prevents us from directly analyzing the effect of informational externalities with standard voting mechanisms. To overcome this, we present an intermediary mechanism for learning how preferences change with external information which does not require eliciting full cardinal preferences. With this tool in hand, we find that voting mechanisms are generally more likely to select the alternative most favored by the external information, and when external information reflects the population's true preferences, social welfare increases in expectation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube