Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laissez-Faire Harms: Algorithmic Biases in Generative Language Models (2404.07475v2)

Published 11 Apr 2024 in cs.CL, cs.AI, cs.CY, and cs.LG

Abstract: The rapid deployment of generative LLMs (LMs) has raised concerns about social biases affecting the well-being of diverse consumers. The extant literature on generative LMs has primarily examined bias via explicit identity prompting. However, prior research on bias in earlier language-based technology platforms, including search engines, has shown that discrimination can occur even when identity terms are not specified explicitly. Studies of bias in LM responses to open-ended prompts (where identity classifications are left unspecified) are lacking and have not yet been grounded in end-consumer harms. Here, we advance studies of generative LM bias by considering a broader set of natural use cases via open-ended prompting. In this "laissez-faire" setting, we find that synthetically generated texts from five of the most pervasive LMs (ChatGPT3.5, ChatGPT4, Claude2.0, Llama2, and PaLM2) perpetuate harms of omission, subordination, and stereotyping for minoritized individuals with intersectional race, gender, and/or sexual orientation identities (AI/AN, Asian, Black, Latine, MENA, NH/PI, Female, Non-binary, Queer). We find widespread evidence of bias to an extent that such individuals are hundreds to thousands of times more likely to encounter LM-generated outputs that portray their identities in a subordinated manner compared to representative or empowering portrayals. We also document a prevalence of stereotypes (e.g. perpetual foreigner) in LM-generated outputs that are known to trigger psychological harms that disproportionately affect minoritized individuals. These include stereotype threat, which leads to impaired cognitive performance and increased negative self-perception. Our findings highlight the urgent need to protect consumers from discriminatory harms caused by LLMs and invest in critical AI education programs tailored towards empowering diverse consumers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Evan Shieh (2 papers)
  2. Faye-Marie Vassel (2 papers)
  3. Cassidy Sugimoto (3 papers)
  4. Thema Monroe-White (4 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com