Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Too Hot to Handle: Searching for Inflationary Particle Production in Planck Data (2405.03738v2)

Published 6 May 2024 in astro-ph.CO, gr-qc, hep-ex, hep-ph, and hep-th

Abstract: Non-adiabatic production of massive particles is a generic feature of many inflationary mechanisms. If sufficiently massive, these particles can leave features in the cosmic microwave background (CMB) that are not well-captured by traditional correlation function analyses. We consider a scenario in which particle production occurs only in a narrow time-interval during inflation, eventually leading to CMB hot- or coldspots with characteristic shapes and sizes. Searching for such features in CMB data is analogous to searching for late-Universe hot- or coldspots, such as those due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Exploiting this data-analysis parallel, we perform a search for particle-production hotspots in the Planck PR4 temperature dataset, which we implement via a matched-filter analysis. Our pipeline is validated on synthetic observations and found to yield unbiased constraints on sufficiently large hotspots across $\approx 60\%$ of the sky. After removing point sources and tSZ clusters, we find no evidence for new physics and place novel bounds on the coupling between the inflaton and massive particles. These bounds are strongest for larger hotspots, produced early in inflation, whilst sensitivity to smaller hotspots is limited by noise and beam effects. Through such methods we can constrain particles with masses $\mathcal{O}(100)$ times larger than the inflationary Hubble scale, which represents possibly the highest energies ever directly probed with observational data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Achúcarro et al.,   (2022), arXiv:2203.08128 [astro-ph.CO] .
  2. X. Chen and Y. Wang, JCAP 04, 027 (2010), arXiv:0911.3380 [hep-th] .
  3. N. Arkani-Hamed and J. Maldacena,   (2015), arXiv:1503.08043 [hep-th] .
  4. A. E. Romano and M. Sasaki, Phys. Rev. D 78, 103522 (2008), arXiv:0809.5142 [gr-qc] .
  5. N. Barnaby and Z. Huang, Phys. Rev. D 80, 126018 (2009), arXiv:0909.0751 [astro-ph.CO] .
  6. J. Maldacena, Fortsch. Phys. 64, 10 (2016), arXiv:1508.01082 [hep-th] .
  7. M. Münchmeyer and K. M. Smith, Phys. Rev. D 100, 123511 (2019), arXiv:1910.00596 [astro-ph.CO] .
  8. Y. Akrami et al. (Planck), Astron. Astrophys. 643, A42 (2020a), arXiv:2007.04997 [astro-ph.CO] .
  9. Y. B. Zeldovich and R. A. Sunyaev, ApSS 4, 301 (1969).
  10. M. Hilton et al. (ACT, DES), Astrophys. J. Suppl. 253, 3 (2021), arXiv:2009.11043 [astro-ph.CO] .
  11. L. E. Bleem et al. (SPT, DES), Open J. Astrophys. 7, astro.2311.07512 (2024), arXiv:2311.07512 [astro-ph.CO] .
  12. P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A27 (2016a), arXiv:1502.01598 [astro-ph.CO] .
  13. P. A. R. Ade et al. (Planck), Astron. Astrophys. 550, A131 (2013), arXiv:1207.4061 [astro-ph.CO] .
  14. M. G. Haehnelt and M. Tegmark, Mon. Not. Roy. Astron. Soc. 279, 545 (1996), arXiv:astro-ph/9507077 .
  15. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  16. P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A29 (2014), arXiv:1303.5089 [astro-ph.CO] .
  17. R. Adam et al. (Planck), Astron. Astrophys. 594, A7 (2016), arXiv:1502.01586 [astro-ph.IM] .
  18. P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A26 (2016b), arXiv:1507.02058 [astro-ph.CO] .
  19. N. Aghanim et al. (Planck), Astron. Astrophys. 594, A22 (2016), arXiv:1502.01596 [astro-ph.CO] .
  20. S. Kumar and N. Weiner, to appear .
  21. M. Tristram et al., Astron. Astrophys. 647, A128 (2021), arXiv:2010.01139 [astro-ph.CO] .
  22. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A4 (2020b), arXiv:1807.06208 [astro-ph.CO] .
  23. Y. Akrami et al. (Planck), Astron. Astrophys. 619, A94 (2018), arXiv:1802.08649 [astro-ph.CO] .
  24. P. A. R. Ade et al. (BICEP, Keck), Phys. Rev. Lett. 127, 151301 (2021), arXiv:2110.00483 [astro-ph.CO] .
  25. S. W. Henderson et al., J. Low Temp. Phys. 184, 772 (2016), arXiv:1510.02809 [astro-ph.IM] .
  26. W. Coulton et al. (ACT), Phys. Rev. D 109, 063530 (2024), arXiv:2307.01258 [astro-ph.CO] .
  27. B. A. Benson et al. (SPT-3G), Proc. SPIE Int. Soc. Opt. Eng. 9153, 91531P (2014), arXiv:1407.2973 [astro-ph.IM] .
  28. L. E. Bleem et al. (SPT-SZ), Astrophys. J. Supp. 258, 36 (2022), arXiv:2102.05033 [astro-ph.CO] .
  29. P. Ade et al. (Simons Observatory), JCAP 02, 056 (2019), arXiv:1808.07445 [astro-ph.CO] .
  30. K. Abazajian et al.,   (2019), arXiv:1907.04473 [astro-ph.IM] .
  31. C. R. Harris et al., Nature 585, 357 (2020), arXiv:2006.10256 [cs.MS] .
  32. J. D. Hunter, Computing in Science & Engineering 9, 90 (2007).
Citations (2)

Summary

We haven't generated a summary for this paper yet.