Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Nonexistence of Courant-type nodal domain bounds for eigenfunctions of the Dirichlet-to-Neumann operator (2404.07138v1)

Published 10 Apr 2024 in math.SP, math.AP, and math.DG

Abstract: Given a compact manifold $\mathcal M$ with boundary of dimension $n\geq 3$ and any integers $K$ and $N$, we show that there exists a metric on $\mathcal M$ for which the first $K$ nonconstant eigenfunctions of the Dirichlet-to-Neumann map on $\partial\mathcal M$ have at least $N$ nodal components. This provides a negative answer to the question of whether the number of nodal domains of Dirichlet-to-Neumann eigenfunctions satisfies a Courant-type bound, which has been featured in recent surveys by Girouard and Polterovich [21, Open problem 9] and by Colbois, Girouard, Gordon and Sher [9, Open question 10.14].

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. R. Abraham and J. Robbin. Transversal mappings and flows. W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley.
  2. G. Alessandrini and R. Magnanini. Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal., 25(5):1259–1268, 1994.
  3. Spectral geometry of the Steklov problem on orbifolds. Int. Math. Res. Not. IMRN, (1):90–139, 2019.
  4. On the critical points of Steklov eigenfunctions. arXiv:2402.01190, 2024.
  5. K. Bellová and F.-H. Lin. Nodal sets of Steklov eigenfunctions. Calc. Var. Partial Differential Equations, 54(2):2239–2268, 2015.
  6. Spectral optimization for the Stekloff-Laplacian: the stability issue. J. Funct. Anal., 262(11):4675–4710, 2012.
  7. Coarse nodal count and topological persistence. arXiv:2206.06347, 2022.
  8. B. Colbois and A. El Soufi. Spectrum of the Laplacian with weights. Ann. Global Anal. Geom., 55(2):149–180, 2019.
  9. Some recent developments on the Steklov eigenvalue problem. Rev. Mat. Complut., 37(1):1–161, 2024.
  10. The Steklov and Laplacian spectra of Riemannian manifolds with boundary. J. Funct. Anal., 278(6):108409, 38, 2020.
  11. Y. Colin de Verdière. Sur la multiplicité de la première valeur propre non nulle du laplacien. Comment. Math. Helv., 61(2):254–270, 1986.
  12. R. Courant. Ein allgemeiner satzt zur theorie der eigenfunktionen selbsadjungierter differentialausdrücke. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1923:81–84, 1923.
  13. R. Courant and D. Hilbert. Methods of mathematical physics. Vol. I. Interscience Publishers, Inc., New York, 1953.
  14. Stability in the inverse Steklov problem on warped product Riemannian manifolds. J. Geom. Anal., 31(2):1821–1854, 2021.
  15. S. Decio. Nodal sets of Steklov eigenfunctions near the boundary: inner radius estimates. Int. Math. Res. Not. IMRN, (21):16709–16729, 2022.
  16. A. Enciso and D. Peralta-Salas. Eigenfunctions with prescribed nodal sets. J. Differential Geom., 101(2):197–211, 2015.
  17. A. Fraser and R. Schoen. The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math., 226(5):4011–4030, 2011.
  18. A. Fraser and R. Schoen. Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. Math., 203(3):823–890, 2016.
  19. D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
  20. A. Girouard and J. Lagacé. Large Steklov eigenvalues via homogenisation on manifolds. Invent. Math., 226(3):1011–1056, 2021.
  21. A. Girouard and I. Polterovich. Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory, 7(2):321–359, 2017.
  22. A. Hassannezhad and L. Miclo. Higher order Cheeger inequalities for Steklov eigenvalues. Ann. Sci. Éc. Norm. Supér. (4), 53(1):43–88, 2020.
  23. A. Hassannezhad and D. Sher. Nodal count for Dirichlet-to-Neumann operators with potential. arXiv:2107.03370, 2021.
  24. P. Jammes. Prescription du spectre de Steklov dans une classe conforme. Anal. PDE, 7(3):529–549, 2014.
  25. Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces. Ann. Inst. Fourier (Grenoble), 64(6):2481–2502, 2014.
  26. Weyl’s law for the Steklov problem on surfaces with rough boundary. Arch. Ration. Mech. Anal., 247(5):Paper No. 77, 20, 2023.
  27. An inequality of a Stekloff eigenvalue by the method of defect. Proc. Amer. Math. Soc., 20:357–360, 1969.
  28. The legacy of Vladimir Andreevich Steklov. Notices Amer. Math. Soc., 61(1):9–22, 2014.
  29. D. Lannes. The water waves problem, volume 188 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymptotics.
  30. Sloshing, Steklov and corners: asymptotics of sloshing eigenvalues. J. Anal. Math., 146(1):65–125, 2022.
  31. R. Petrides. Maximizing Steklov eigenvalues on surfaces. J. Differential Geom., 113(1):95–188, 2019.
  32. G. Rozenblum. Weyl asymptotics for Poincaré-Steklov eigenvalues in a domain with Lipschitz boundary. J. Spectr. Theory, 13(3):755–803, 2023.
  33. W. Stekloff. Sur les problèmes fondamentaux de la physique mathématique (suite et fin). Ann. Sci. École Norm. Sup. (3), 19:455–490, 1902.
  34. G. Uhlmann. Inverse problems: seeing the unseen. Bull. Math. Sci., 4(2):209–279, 2014.
  35. L. Wang. Generic properties of Steklov eigenfunctions. Trans. Amer. Math. Soc., 375(11):8241–8255, 2022.
  36. S. Zelditch. Hausdorff measure of nodal sets of analytic Steklov eigenfunctions. Math. Res. Lett., 22(6):1821–1842, 2015.
  37. J. Zhu. Interior nodal sets of Steklov eigenfunctions on surfaces. Anal. PDE, 9(4):859–880, 2016.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.