Nonexistence of Courant-type nodal domain bounds for eigenfunctions of the Dirichlet-to-Neumann operator (2404.07138v1)
Abstract: Given a compact manifold $\mathcal M$ with boundary of dimension $n\geq 3$ and any integers $K$ and $N$, we show that there exists a metric on $\mathcal M$ for which the first $K$ nonconstant eigenfunctions of the Dirichlet-to-Neumann map on $\partial\mathcal M$ have at least $N$ nodal components. This provides a negative answer to the question of whether the number of nodal domains of Dirichlet-to-Neumann eigenfunctions satisfies a Courant-type bound, which has been featured in recent surveys by Girouard and Polterovich [21, Open problem 9] and by Colbois, Girouard, Gordon and Sher [9, Open question 10.14].
- R. Abraham and J. Robbin. Transversal mappings and flows. W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley.
- G. Alessandrini and R. Magnanini. Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal., 25(5):1259–1268, 1994.
- Spectral geometry of the Steklov problem on orbifolds. Int. Math. Res. Not. IMRN, (1):90–139, 2019.
- On the critical points of Steklov eigenfunctions. arXiv:2402.01190, 2024.
- K. Bellová and F.-H. Lin. Nodal sets of Steklov eigenfunctions. Calc. Var. Partial Differential Equations, 54(2):2239–2268, 2015.
- Spectral optimization for the Stekloff-Laplacian: the stability issue. J. Funct. Anal., 262(11):4675–4710, 2012.
- Coarse nodal count and topological persistence. arXiv:2206.06347, 2022.
- B. Colbois and A. El Soufi. Spectrum of the Laplacian with weights. Ann. Global Anal. Geom., 55(2):149–180, 2019.
- Some recent developments on the Steklov eigenvalue problem. Rev. Mat. Complut., 37(1):1–161, 2024.
- The Steklov and Laplacian spectra of Riemannian manifolds with boundary. J. Funct. Anal., 278(6):108409, 38, 2020.
- Y. Colin de Verdière. Sur la multiplicité de la première valeur propre non nulle du laplacien. Comment. Math. Helv., 61(2):254–270, 1986.
- R. Courant. Ein allgemeiner satzt zur theorie der eigenfunktionen selbsadjungierter differentialausdrücke. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1923:81–84, 1923.
- R. Courant and D. Hilbert. Methods of mathematical physics. Vol. I. Interscience Publishers, Inc., New York, 1953.
- Stability in the inverse Steklov problem on warped product Riemannian manifolds. J. Geom. Anal., 31(2):1821–1854, 2021.
- S. Decio. Nodal sets of Steklov eigenfunctions near the boundary: inner radius estimates. Int. Math. Res. Not. IMRN, (21):16709–16729, 2022.
- A. Enciso and D. Peralta-Salas. Eigenfunctions with prescribed nodal sets. J. Differential Geom., 101(2):197–211, 2015.
- A. Fraser and R. Schoen. The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math., 226(5):4011–4030, 2011.
- A. Fraser and R. Schoen. Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. Math., 203(3):823–890, 2016.
- D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
- A. Girouard and J. Lagacé. Large Steklov eigenvalues via homogenisation on manifolds. Invent. Math., 226(3):1011–1056, 2021.
- A. Girouard and I. Polterovich. Spectral geometry of the Steklov problem (survey article). J. Spectr. Theory, 7(2):321–359, 2017.
- A. Hassannezhad and L. Miclo. Higher order Cheeger inequalities for Steklov eigenvalues. Ann. Sci. Éc. Norm. Supér. (4), 53(1):43–88, 2020.
- A. Hassannezhad and D. Sher. Nodal count for Dirichlet-to-Neumann operators with potential. arXiv:2107.03370, 2021.
- P. Jammes. Prescription du spectre de Steklov dans une classe conforme. Anal. PDE, 7(3):529–549, 2014.
- Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces. Ann. Inst. Fourier (Grenoble), 64(6):2481–2502, 2014.
- Weyl’s law for the Steklov problem on surfaces with rough boundary. Arch. Ration. Mech. Anal., 247(5):Paper No. 77, 20, 2023.
- An inequality of a Stekloff eigenvalue by the method of defect. Proc. Amer. Math. Soc., 20:357–360, 1969.
- The legacy of Vladimir Andreevich Steklov. Notices Amer. Math. Soc., 61(1):9–22, 2014.
- D. Lannes. The water waves problem, volume 188 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2013. Mathematical analysis and asymptotics.
- Sloshing, Steklov and corners: asymptotics of sloshing eigenvalues. J. Anal. Math., 146(1):65–125, 2022.
- R. Petrides. Maximizing Steklov eigenvalues on surfaces. J. Differential Geom., 113(1):95–188, 2019.
- G. Rozenblum. Weyl asymptotics for Poincaré-Steklov eigenvalues in a domain with Lipschitz boundary. J. Spectr. Theory, 13(3):755–803, 2023.
- W. Stekloff. Sur les problèmes fondamentaux de la physique mathématique (suite et fin). Ann. Sci. École Norm. Sup. (3), 19:455–490, 1902.
- G. Uhlmann. Inverse problems: seeing the unseen. Bull. Math. Sci., 4(2):209–279, 2014.
- L. Wang. Generic properties of Steklov eigenfunctions. Trans. Amer. Math. Soc., 375(11):8241–8255, 2022.
- S. Zelditch. Hausdorff measure of nodal sets of analytic Steklov eigenfunctions. Math. Res. Lett., 22(6):1821–1842, 2015.
- J. Zhu. Interior nodal sets of Steklov eigenfunctions on surfaces. Anal. PDE, 9(4):859–880, 2016.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.