Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Probing phase transitions with correlations in configuration space (2404.07087v3)

Published 10 Apr 2024 in cond-mat.stat-mech

Abstract: In principle, the probability of configurations, determined by the system's partition function or wave function, encapsulates essential information about phases and phase transitions. Despite the exponentially large configuration space, we show that the generic correlation of distances between configurations, with a degree of freedom proportional to the lattice size, can probe phase transitions using importance sampling procedures like Monte Carlo simulations. The distribution of sampled distances varies significantly across different phases, suggesting universal critical behavior for uncertainty and participation entropy. For various classical spin models with different phases and transitions, finite-size analysis based on these quantities accurately identifies phase transitions and critical points. Notably, in all cases, the critical exponent derived from the uncertainty of distances equals the anomalous dimension governing real-space correlation decay. Thus, configuration space correlations, defined by distance uncertainties, share the same decay ratio as real-space correlations, determining the universality class of phase transitions. This work applies to diverse lattice models with different local degrees of freedom, e.g., two levels for Ising-like models, discrete multi-levels for q-state clock models, and continuous local levels for the XY model, offering a robust, alternative method for understanding complex phases and transitions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. L. D. Landau, E. M. Lifshitz, and E. M. Pitaevskii, Statistical Physics (Butterworth-Heinemann, New York, 1999).
  2. S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, 2011).
  3. K. G. Wilson and J. Kogut, The renormalization group and the ϵitalic-ϵ\epsilonitalic_ϵ expansion, Physics Reports 12, 75 (1974).
  4. J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge Lecture Notes in Physics (Cambridge University Press, 1996).
  5. A. W. Sandvik, Computational studies of quantum spin systems, AIP Conference Proceedings 1297, 135 (2010).
  6. Y. Tomita and Y. Okabe, Probability-changing cluster algorithm for two-dimensional XYXY\mathrm{XY}roman_XY and clock models, Phys. Rev. B 65, 184405 (2002a).
  7. P.-Y. Hsiao and P. Monceau, Critical behavior of the three-state potts model on the sierpinski carpet, Phys. Rev. B 65, 184427 (2002).
  8. G. Li, K. H. Pai, and Z.-C. Gu, Tensor-network renormalization approach to the q𝑞qitalic_q-state clock model, Phys. Rev. Res. 4, 023159 (2022a).
  9. M. S. S. Challa and D. P. Landau, Critical behavior of the six-state clock model in two dimensions, Phys. Rev. B 33, 437 (1986).
  10. Y. Tomita and Y. Okabe, Probability-changing cluster algorithm for two-dimensional XYXY\mathrm{XY}roman_XY and clock models, Phys. Rev. B 65, 184405 (2002b).
  11. C.-O. Hwang, Six-state clock model on the square lattice: Fisher zero approach with wang-landau sampling, Phys. Rev. E 80, 042103 (2009).
  12. S. K. Baek and P. Minnhagen, Non-kosterlitz-thouless transitions for the q𝑞qitalic_q-state clock models, Phys. Rev. E 82, 031102 (2010).
  13. G. Li, K. H. Pai, and Z.-C. Gu, Tensor-network renormalization approach to the q𝑞qitalic_q-state clock model, Phys. Rev. Res. 4, 023159 (2022b).
  14. F.-F. Song, T.-Y. Lin, and G.-M. Zhang, General tensor network theory for frustrated classical spin models in two dimensions, Phys. Rev. B 108, 224404 (2023).
  15. R. Mondaini, S. Tarat, and R. T. Scalettar, Quantum critical points and the sign problem, Science 375, 418 (2022).
  16. J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nature Physics 13, 431 (2017).
  17. W. Zhang, J. Liu, and T.-C. Wei, Machine learning of phase transitions in the percolation and X⁢Y𝑋𝑌{XY}italic_X italic_Y models, Phys. Rev. E 99, 032142 (2019).
  18. J. Ding, H.-K. Tang, and W. C. Yu, Rapid detection of phase transitions from Monte Carlo samples before equilibrium, SciPost Phys. 13, 057 (2022).
  19. P. Suchsland and S. Wessel, Parameter diagnostics of phases and phase transition learning by neural networks, Phys. Rev. B 97, 174435 (2018).
  20. Y.-H. Liu and E. P. L. van Nieuwenburg, Discriminative cooperative networks for detecting phase transitions, Phys. Rev. Lett. 120, 176401 (2018).
  21. M. J. S. Beach, A. Golubeva, and R. G. Melko, Machine learning vortices at the Kosterlitz-Thouless transition, Phys. Rev. B 97, 045207 (2018).
  22. M. S. Rodriguez-Nieva, Joaquin F.and Scheurer, Identifying topological order through unsupervised machine learning, Nature Physics 15, 790 (2019).
  23. D. Giataganas, C.-Y. Huang, and F.-L. Lin, Neural network flows of low q-state potts and clock models, New Journal of Physics 24, 043040 (2022).
  24. Y. Miyajima and M. Mochizuki, Machine-learning detection of the Berezinskii-Kosterlitz-Thouless transition and the second-order phase transition in xxz models, Phys. Rev. B 107, 134420 (2023).
  25. N. Macé, F. Alet, and N. Laflorencie, Multifractal scalings across the many-body localization transition, Phys. Rev. Lett. 123, 180601 (2019).
  26. C. Cheng, Many-body localization in clean chains with long-range interactions, Phys. Rev. B 108, 155113 (2023).
  27. W. Visscher, Localization of electron wave functions in disordered systems, Journal of Non-Crystalline Solids 8-10, 477 (1972), amorphous and Liquid Semiconductors.
  28. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics 6, 1181 (1973a).
  29. J. M. Kosterlitz, The critical properties of the two-dimensional x⁢y𝑥𝑦xyitalic_x italic_y model, Journal of Physics C: Solid State Physics 7, 1046 (1974).
  30. S. Elitzur, R. B. Pearson, and J. Shigemitsu, Phase structure of discrete abelian spin and gauge systems, Phys. Rev. D 19, 3698 (1979).
  31. J. L. Cardy, General discrete planar models in two dimensions: Duality properties and phase diagrams, Journal of Physics A: Mathematical and General 13, 1507 (1980).
  32. S. Chatterjee, S. Puri, and R. Paul, Ordering kinetics in the q𝑞qitalic_q-state clock model: Scaling properties and growth laws, Phys. Rev. E 98, 032109 (2018).
  33. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics 6, 1181 (1973b).
  34. Y.-D. Hsieh, Y.-J. Kao, and A. W. Sandvik, Finite-size scaling method for the berezinskii–kosterlitz–thouless transition, Journal of Statistical Mechanics: Theory and Experiment 2013, P09001 (2013).
  35. R. G. Jha, Critical analysis of two-dimensional classical xy model, J. Stat. Mech. , 083203 (2020).
  36. F. Y. Wu, The potts model, Rev. Mod. Phys. 54, 235 (1982).
  37. N. Sale, J. Giansiracusa, and B. Lucini, Quantitative analysis of phase transitions in two-dimensional x⁢y𝑥𝑦xyitalic_x italic_y models using persistent homology, Phys. Rev. E 105, 024121 (2022).
  38. E. T. Jaynes, Prior probabilities, IEEE Transactions on Systems Science and Cybernetics 4, 227 (1968).
  39. U. Wolff, Collective monte carlo updating for spin systems, Phys. Rev. Lett. 62, 361 (1989).
  40. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220, 671 (1983).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets