Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

First constraints on the $L_μ-L_τ$ explanation of the muon $g-2$ anomaly from NA64-$e$ at CERN (2404.06982v6)

Published 10 Apr 2024 in hep-ex and hep-ph

Abstract: The inclusion of an additional $U(1)$ gauge $L_\mu-L_\tau$ symmetry would release the tension between the measured and the predicted value of the anomalous muon magnetic moment: this paradigm assumes the existence of a new, light $Z\prime$ vector boson, with dominant coupling to $\mu$ and $\tau$ leptons and interacting with electrons via a loop mechanism. The $L_\mu-L_\tau$ model can also explain the Dark Matter relic abundance, by assuming that the $Z'$ boson acts as a "portal" to a new Dark Sector of particles in Nature, not charged under known interactions. In this work we present the results of the $Z'$ search performed by the NA64-$e$ experiment at CERN SPS, that collected $\sim 9\times10{11}$ 100 GeV electrons impinging on an active thick target. Despite the suppressed $Z'$ production yield with an electron beam, NA64-$e$ provides the first accelerator-based results excluding the $g-2$ preferred band of the $Z'$ parameter space in the 1 keV $ < m_{Z'} \lesssim 2$ MeV range, in complementarity with the limits recently obtained by the NA64-$\mu$ experiment with a muon beam.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. G. Bertone, D. Hooper, and J. Silk, Phys. Rept. 405, 279 (2005), arXiv:hep-ph/0404175 .
  2. L. Roszkowski, E. M. Sessolo, and S. Trojanowski, Rept. Prog. Phys. 81, 066201 (2018), arXiv:1707.06277 [hep-ph] .
  3. K. M. Zurek, Dark Matter Candidates of a Very Low Mass (2024), arXiv:2401.03025 [hep-ph] .
  4. D. P. Aguillard et al. (Muon g-2), Phys. Rev. Lett. 131, 161802 (2023), arXiv:2308.06230 [hep-ex] .
  5. T. Aoyama et al., Phys. Rept. 887, 1 (2020), arXiv:2006.04822 [hep-ph] .
  6. F. V. Ignatov et al. (CMD-3),   (2023), arXiv:2302.08834 [hep-ex] .
  7. S. Borsanyi et al., Nature 593, 51 (2021), arXiv:2002.12347 [hep-lat] .
  8. M. Bauer, P. Foldenauer, and J. Jaeckel, JHEP 07, 094, arXiv:1803.05466 [hep-ph] .
  9. J. P. Lees et al. (BaBar), Phys. Rev. D 94, 011102 (2016), arXiv:1606.03501 [hep-ex] .
  10. T. Czank et al. (Belle), Phys. Rev. D 106, 012003 (2022), arXiv:2109.08596 [hep-ex] .
  11. I. Adachi et al. (Belle-II), Search for a μ+⁢μ−superscript𝜇superscript𝜇\mu^{+}\mu^{-}italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT resonance in four-muon final states at Belle II (2024), arXiv:2403.02841 [hep-ex] .
  12. A. M. Sirunyan et al. (CMS), Phys. Lett. B 792, 345 (2019), arXiv:1808.03684 [hep-ex] .
  13. I. Adachi et al. (Belle-II), Phys. Rev. Lett. 130, 231801 (2023), arXiv:2212.03066 [hep-ex] .
  14. Y. M. Andreev et al. (NA64), Phys. Rev. D 106, 032015 (2022), arXiv:2206.03101 [hep-ex] .
  15. S. N. Gninenko and N. V. Krasnikov, Phys. Lett. B 783, 24 (2018), arXiv:1801.10448 [hep-ph] .
  16. M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi (2020) SpringerBrief in Physics, arXiv:2005.01515 [hep-ph] .
  17. D. Banerjee et al., Nucl. Instrum. Meth. A 881, 72 (2018a), arXiv:1708.04087 [physics.ins-det] .
  18. E. Depero et al., Nucl. Instrum. Meth. A 866, 196 (2017), arXiv:1703.05993 [physics.ins-det] .
  19. D. Banerjee et al. (NA64), Phys. Rev. D 97, 072002 (2018b), arXiv:1710.00971 [hep-ex] .
  20. Y. M. Andreev et al. (NA64), Phys. Rev. Lett. 131, 161801 (2023a), arXiv:2307.02404 [hep-ex] .
  21. Y. M. Andreev et al.,   (2023b), arXiv:2305.19411 [hep-ex] .
  22. D. Banerjee et al. (NA64), Phys. Rev. Lett. 125, 081801 (2020), arXiv:2005.02710 [hep-ex] .
  23. B. B. Oberhauser et al.,   (2024), arXiv:2401.12573 [hep-ph] .
  24. S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A 506, 250 (2003).
  25. J. Allison et al., Nucl. Instrum. Meth. A 835, 186 (2016).
  26. E. Gross, in PHYSTAT-LHC Workshop on Statistical Issues for LHC Physics (2007).
  27. A. Kamada and H.-B. Yu, Phys. Rev. D 92, 113004 (2015), arXiv:1504.00711 [hep-ph] .
  28. S. Gninenko and D. Gorbunov, Phys. Lett. B 823, 136739 (2021), arXiv:2007.16098 [hep-ph] .
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube