Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Ice-Filling: Near-Optimal Channel Estimation for Dense Array Systems (2404.06806v3)

Published 10 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: By deploying a large number of antennas with sub-half-wavelength spacing in a compact space, dense array systems (DASs) can fully unleash the multiplexing and diversity gains of limited apertures. To acquire these gains, accurate channel state information acquisition is necessary but challenging due to the large antenna numbers. To overcome this obstacle, this paper reveals that designing the observation matrix to exploit the high spatial correlation of DAS channels is crucial for realizing near-optimal Bayesian channel estimation. Specifically, we prove that the observation matrix design for channel estimation is equivalent to a time-domain duality of point-to-point multiple-input multiple-output precoding, except for the change in the total power constraint on the precoding matrix to the pilot-wise discrete power constraint on the observation matrix. Inspired by Bayesian regression, a novel ice-filling algorithm is proposed to design amplitude-and-phase controllable observation matrices, and a majorization-minimization algorithm is proposed to address the phase-only controllable case. Particularly, we prove that the ice-filling algorithm can be interpreted as a ``quantized" water-filling algorithm, wherein the latter's continuous power-allocation process is converted into the former's discrete pilot-assignment process. To support the near-optimality of the proposed designs, we provide comprehensive analyses on the achievable mean square errors and their asymptotic expressions. Finally, numerical results confirm that our proposed designs achieve the near-optimal channel estimation performance and outperform existing approaches significantly.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, Aug. 2020.
  2. N. Shlezinger, G. C. Alexandropoulos, M. F. Imani, Y. C. Eldar, and D. R. Smith, “Dynamic metasurface antennas for 6G extreme massive MIMO communications,” IEEE Wireless Commun., vol. 28, no. 2, pp. 106–113, Apr. 2021.
  3. C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas, J. S. Thompson, E. G. Larsson, M. D. Renzo, W. Tong, P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, “On the road to 6G: Visions, requirements, key technologies, and testbeds,” IEEE Commun. Surv. Tutorials, vol. 25, no. 2, pp. 905–974, Secondquarter 2023.
  4. C. Han, L. Yan, and J. Yuan, “Hybrid beamforming for terahertz wireless communications: Challenges, architectures, and open problems,” IEEE Wireless Commun., vol. 28, no. 4, pp. 198–204, Aug. 2021.
  5. R. M. Dreifuerst and R. W. Heath, “Massive MIMO in 5G: How beamforming, codebooks, and feedback enable larger arrays,” IEEE Commun. Mag., vol. 61, no. 12, pp. 18–23, Dec. 2023.
  6. K. Ying, Z. Gao, S. Chen, X. Gao, M. Matthaiou, R. Zhang, and R. Schober, “Reconfigurable massive MIMO: Harnessing the power of the electromagnetic domain for enhanced information transfer,” IEEE Wireless Commun., pp. 1–8, Mar. 2023.
  7. M. Cui and L. Dai, “Channel estimation for extremely large-scale MIMO: Far-field or near-field?” IEEE Trans. Commun., vol. 70, no. 4, pp. 2663–2677, Apr. 2022.
  8. M. Cui, Z. Wu, Y. Lu, X. Wei, and L. Dai, “Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions,” IEEE Commun. Mag., vol. 61, no. 1, pp. 40–46, Jan. 2023.
  9. Z. Zhang and L. Dai, “Pattern-division multiplexing for multi-user continuous-aperture MIMO,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2350–2366, Aug. 2023.
  10. Y. Liu, M. Zhang, T. Wang, A. Zhang, and M. Debbah, “Densifying MIMO: Channel modeling, physical constraints, and performance evaluation for holographic communications,” IEEE J. Sel. Areas Commun., Apr. 2023.
  11. D. González-Ovejero, G. Minatti, G. Chattopadhyay, and S. Maci, “Multibeam by metasurface antennas,” IEEE Trans. Antennas Propag., vol. 65, no. 6, pp. 2923–2930, Jun. 2017.
  12. R.-B. Hwang, “Binary meta-hologram for a reconfigurable holographic metamaterial antenna,” Sci. Rep., vol. 10, no. 1, p. 8586, 2020.
  13. C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag., vol. 56, no. 9, pp. 162–169, Sep. 2018.
  14. M. Liu, Q. Yang, A. A. Rifat, V. Raj, A. Komar, J. Han, M. Rahmani, H. T. Hattori, D. Neshev, D. A. Powell et al., “Deeply subwavelength metasurface resonators for terahertz wavefront manipulation,” Adv. Opt. Mater., vol. 7, no. 21, p. 1900736, 2019.
  15. M. Di Renzo, D. Dardari, and N. Decarli, “LoS MIMO-arrays vs. LoS MIMO-surfaces,” in Proc. 17th European Conference on Antennas and Propagation (EuCAP’23).   Florence, Italy: IEEE, 2023, pp. 1–5.
  16. M. Akrout, V. Shyianov, F. Bellili, A. Mezghani, and R. W. Heath, “Super-wideband massive MIMO,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2414–2430, Aug. 2023.
  17. M. Gao, H. Yin, and L. Han, “An EEP-based robust beamforming approach for superdirective antenna arrays and experimental validations,” arXiv preprint arXiv:2308.11934, Aug. 2023.
  18. J. Xie, H. Yin, and L. Han, “A genetic algorithm based superdirective beamforming method under excitation power range constraints,” arXiv preprint arXiv:2307.02063, Jul. 2023.
  19. C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. D. Renzo, and M. Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27, no. 5, pp. 118–125, Oct. 2020.
  20. Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?” IEEE Trans. Commun., vol. 71, no. 3, pp. 1707–1725, Mar. 2023.
  21. Z. Zhang and L. Dai, “Reconfigurable intelligent surfaces for 6G: Nine fundamental issues and one critical problem,” Tsinghua Sci. Technol., vol. 28, no. 5, pp. 929–939, Oct. 2023.
  22. R. Deng, Y. Zhang, H. Zhang, B. Di, H. Zhang, H. V. Poor, and L. Song, “Reconfigurable holographic surfaces for ultra-massive MIMO in 6G: Practical design, optimization and implementation,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2367–2379, Aug. 2023.
  23. K.-K. Wong, A. Shojaeifard, K.-F. Tong, and Y. Zhang, “Fluid antenna systems,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1950–1962, Mar. 2020.
  24. Z. Zhang, J. Zhu, L. Dai, and R. W. Heath Jr, “Successive Bayesian reconstructor for channel estimation in fluid antenna systems,” arXiv preprint arXiv:2312.06551, Dec. 2023.
  25. C. Han, J. M. Jornet, and I. Akyildiz, “Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications,” in Proc. IEEE 87th Veh. Technol. Conf. (IEEE VTC’18-Spring), Porto, Portugal, Jun. 2018, pp. 1–5.
  26. O. Yurduseven, D. L. Marks, T. Fromenteze, and D. R. Smith, “Dynamically reconfigurable holographic metasurface aperture for a mills-cross monochromatic microwave camera,” Opt. Express, vol. 26, no. 5, pp. 5281–5291, 2018.
  27. Z. Gao, L. Dai, S. Han, C.-L. I, Z. Wang, and L. Hanzo, “Compressive sensing techniques for next-generation wireless communications,” IEEE Wireless Commun., vol. 25, no. 3, pp. 144–153, Mar. 2018.
  28. Z. Wan, Z. Gao, B. Shim, K. Yang, G. Mao, and M.-S. Alouini, “Compressive sensing based channel estimation for millimeter-wave full-dimensional MIMO with lens-array,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 2337–2342, Feb. 2020.
  29. J. Lee, G.-T. Gil, and Y. H. Lee, “Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2370–2386, Jun. 2016.
  30. C. Huang, L. Liu, C. Yuen, and S. Sun, “Iterative channel estimation using LSE and sparse message passing for mmWave MIMO systems,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 245–259, Jan. 2019.
  31. M. Ke, Z. Gao, Y. Wu, X. Gao, and R. Schober, “Compressive sensing-based adaptive active user detection and channel estimation: Massive access meets massive MIMO,” IEEE Trans. Signal Process., vol. 68, pp. 764–779, Jan. 2020.
  32. S. Rangan, P. Schniter, and A. K. Fletcher, “Vector approximate message passing,” IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6664–6684, Oct. 2019.
  33. N. González-Prelcic, H. Xie, J. Palacios, and T. Shimizu, “Wideband channel tracking and hybrid precoding for mmWave MIMO systems,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2161–2174, Apr. 2021.
  34. X. Ma and Z. Gao, “Data-driven deep learning to design pilot and channel estimator for massive MIMO,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5677–5682, May 2020.
  35. X. Ma, Z. Gao, F. Gao, and M. Di Renzo, “Model-driven deep learning based channel estimation and feedback for millimeter-wave massive hybrid MIMO systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2388–2406, Aug. 2021.
  36. A. Alkhateeb, G. Leus, and R. W. Heath, “Limited feedback hybrid precoding for multi-user millimeter wave systems,” IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.
  37. Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3380–3392, May 2016.
  38. T. Zheng, J. Zhu, Q. Yu, Y. Yan, and L. Dai, “Coded beam training,” arXiv preprint arXiv:2401.01673, Mar. 2024.
  39. Y. Tsaig and D. L. Donoho, “Extensions of compressed sensing,” Signal Process., vol. 86, no. 3, pp. 549–571, Mar. 2006.
  40. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.
  41. C. Williams and C. Rasmussen, “Gaussian processes for regression,” in Adv. Neural Inf. Process. Syst., vol. 8, 1995.
  42. N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-theoretic regret bounds for gaussian process optimization in the bandit setting,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 3250–3265, May 2012.
  43. E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on gaussian process regression: Modelling, exploring, and exploiting functions,” J. Math. Psycho., vol. 85, pp. 1–16, 2018.
  44. G. Zhu, K. Huang, V. K. N. Lau, B. Xia, X. Li, and S. Zhang, “Hybrid beamforming via the Kronecker decomposition for the millimeter-wave massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 2097–2114, Sep. 2017.
  45. Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.
  46. J. Song, P. Babu, and D. P. Palomar, “Sequence design to minimize the weighted integrated and peak sidelobe levels,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2051–2064, Apr. 2016.
  47. 3GPP TR, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3GPP TR 38.901 version 14.0.0 Release, Dec. 2019.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com