Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Bounds for Greedy Schemes in String Optimization based on Greedy Curvatures (2404.06669v2)

Published 10 Apr 2024 in eess.SY, cs.DS, and cs.SY

Abstract: We consider the celebrated bound introduced by Conforti and Cornu\'ejols (1984) for greedy schemes in submodular optimization. The bound assumes a submodular function defined on a collection of sets forming a matroid and is based on greedy curvature. We show that the bound holds for a very general class of string problems that includes maximizing submodular functions over set matroids as a special case. We also derive a bound that is computable in the sense that they depend only on quantities along the greedy trajectory. We prove that our bound is superior to the greedy curvature bound of Conforti and Cornu\'ejols. In addition, our bound holds under a condition that is weaker than submodularity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions—I,” Math. Program., vol. 14, pp. 265–294, 1978.
  2. M. Conforti and G. Cornuéjols, “Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem,” Discrete. Appl. Math., vol. 7, no. 3, pp. 251–274, 1984.
  3. J. Vondrák, “Submodularity and curvature: The optimal algorithm (combinatorial optimization and discrete algorithms),” RIMS Kokyuroku Bessatsu B, vol. 23, pp. 253–266, 2010.
  4. G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák, “Maximizing a monotone submodular function subject to a matroid constraint,” SIAM J. Comput., vol. 40, no. 6, pp. 1740–1766, 2011.
  5. Z. Wang, B. Moran, X. Wang, and Q. Pan, “Approximation for maximizing monotone non-decreasing set functions with a greedy method,” J. Comb. Optim., vol. 31, pp. 29–43, 2016.
  6. S. Welikala, C. G. Cassandras, H. Lin, and P. J. Antsaklis, “A new performance bound for submodular maximization problems and its application to multi-agent optimal coverage problems,” Automatica, vol. 144, p. 110493, 2022.
  7. Z. Zhang, E. K. P. Chong, A. Pezeshki, and W. Moran, “String submodular functions with curvature constraints,” IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 601–616, 2015.
  8. S. Alaei, A. Makhdoumi, and A. Malekian, “Maximizing sequence-submodular functions and its application to online advertising,” Manage. Sci., vol. 67, no. 10, pp. 6030–6054, 2021.
  9. B. Van Over, B. Li, E. K. Chong, and A. Pezeshki, “An improved greedy curvature bound in finite-horizon string optimization with an application to a sensor coverage problem,” in Proc. 62nd IEEE Conf. Decision Control (CDC), Singapore, Dec. 2023, pp. 1257–1262.
  10. M. Streeter and D. Golovin, “An online algorithm for maximizing submodular functions,” in Proc. Adv. in Neural Inf. Process. Syst. 21 (NIPS 2008), vol. 21, Vancouver, BC, Canada, Dec. 2008, pp. 1577–1584.
  11. Y. Liu, Z. Zhang, E. K. P. Chong, and A. Pezeshki, “Performance bounds with curvature for batched greedy optimization,” J. Optim. Theory Appl., vol. 177, pp. 535–562, 2018.
  12. M. Zhong and C. G. Cassandras, “Distributed coverage control and data collection with mobile sensor networks,” IEEE Trans. Autom. Control, vol. 56, no. 10, pp. 2445–2455, 2011.
  13. X. Sun, C. G. Cassandras, and X. Meng, “Exploiting submodularity to quantify near-optimality in multi-agent coverage problems,” Automatica, vol. 100, pp. 349–359, 2019.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com