Causal third-order viscous hydrodynamics within relaxation-time approximation (2404.06381v2)
Abstract: In the present work, we derive a linearly stable and causal theory of relativistic third-order viscous hydrodynamics from the Boltzmann equation with relaxation-time approximation. We employ viscous correction to the distribution function obtained using a Chapman-Enskog like iterative solution of the Boltzmann equation. Our derivation highlights the necessity of incorporating a new dynamical degree of freedom, specifically an irreducible tensors of rank three, within this framework. This differs from the recent formulation of causal third-order theory from the method of moments which requires two dynamical degrees of freedom: an irreducible third-rank and a fourth-rank tensor. We verify the linear stability and causality of the proposed formulation by examining perturbations around a global equilibrium state.
- J. C. Collins and M. J. Perry, Superdense Matter: Neutrons Or Asymptotically Free Quarks?, Phys. Rev. Lett. 34, 1353 (1975).
- E. V. Shuryak, Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Psions, Phys. Lett. B 78, 150 (1978).
- J. I. Kapusta, Quantum Chromodynamics at High Temperature, Nucl. Phys. B 148, 461 (1979).
- H.-T. Elze and U. W. Heinz, Quark - Gluon Transport Theory, Phys. Rept. 183, 81 (1989).
- D. H. Rischke, The Quark gluon plasma in equilibrium, Prog. Part. Nucl. Phys. 52, 197 (2004), arXiv:nucl-th/0305030 .
- L. P. Csernai, J. I. Kapusta, and L. D. McLerran, On the Strongly-Interacting Low-Viscosity Matter Created in Relativistic Nuclear Collisions, Phys. Rev. Lett. 97, 152303 (2006), arXiv:nucl-th/0604032 .
- C. Gale, S. Jeon, and B. Schenke, Hydrodynamic Modeling of Heavy-Ion Collisions, Int. J. Mod. Phys. A 28, 1340011 (2013), arXiv:1301.5893 [nucl-th] .
- U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013), arXiv:1301.2826 [nucl-th] .
- M. P. Heller and M. Spalinski, Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation, Phys. Rev. Lett. 115, 072501 (2015), arXiv:1503.07514 [hep-th] .
- P. Romatschke, Relativistic Fluid Dynamics Far From Local Equilibrium, Phys. Rev. Lett. 120, 012301 (2018), arXiv:1704.08699 [hep-th] .
- W. Florkowski, M. P. Heller, and M. Spalinski, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys. 81, 046001 (2018), arXiv:1707.02282 [hep-ph] .
- P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2019) arXiv:1712.05815 [nucl-th] .
- L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987).
- C. Eckart, The Thermodynamics of Irreversible Processes. 1. The Simple Fluid, Phys. Rev. 58, 267 (1940).
- W. Israel and J. M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals Phys. 118, 341 (1979).
- P. Huovinen and D. Molnar, The Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions, Phys. Rev. C 79, 014906 (2009), arXiv:0808.0953 [nucl-th] .
- A. Muronga, Causal theories of dissipative relativistic fluid dynamics for nuclear collisions, Phys. Rev. C 69, 034903 (2004), arXiv:nucl-th/0309055 .
- M. Martinez and M. Strickland, Constraining relativistic viscous hydrodynamical evolution, Phys. Rev. C 79, 044903 (2009), arXiv:0902.3834 [hep-ph] .
- K. Rajagopal and N. Tripuraneni, Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion, JHEP 03, 018, arXiv:0908.1785 [hep-ph] .
- A. El, Z. Xu, and C. Greiner, Third-order relativistic dissipative hydrodynamics, Phys. Rev. C 81, 041901 (2010), arXiv:0907.4500 [hep-ph] .
- A. Jaiswal, Relativistic dissipative hydrodynamics from kinetic theory with relaxation time approximation, Phys. Rev. C 87, 051901 (2013a), arXiv:1302.6311 [nucl-th] .
- M. Younus and A. Muronga, Third order viscous hydrodynamics from the entropy four current, Phys. Rev. C 102, 034902 (2020), arXiv:1910.11735 [nucl-th] .
- A. Jaiswal, Relativistic third-order dissipative fluid dynamics from kinetic theory, Phys. Rev. C 88, 021903 (2013b), arXiv:1305.3480 [nucl-th] .
- S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: The third order, Phys. Rev. D 93, 066012 (2016), arXiv:1507.02461 [hep-th] .
- C. V. Brito and G. S. Denicol, Linear causality and stability of third-order relativistic dissipative fluid dynamics, Phys. Rev. D 105, 096026 (2022), arXiv:2107.10319 [nucl-th] .
- C. V. P. de Brito and G. S. Denicol, Third-order relativistic dissipative fluid dynamics from the method of moments, Phys. Rev. D 108, 096020 (2023), arXiv:2302.09097 [nucl-th] .
- D. Everett, C. Chattopadhyay, and U. Heinz, Maximum entropy kinetic matching conditions for heavy-ion collisions, Phys. Rev. C 103, 064902 (2021), arXiv:2101.01130 [hep-ph] .
- C. Chattopadhyay, U. Heinz, and T. Schaefer, Fluid dynamics from the Boltzmann equation using a maximum entropy distribution, Phys. Rev. C 108, 034907 (2023), arXiv:2307.10769 [hep-ph] .
- J. L. Anderson and H. R. Witting, A relativistic relaxation-time model for the Boltzmann equation, Physica 74, 466 (1974).
- S. Chapman and T. G. Cowling, The Mathematical Theory of Non- Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, 1970).
- G. S. Denicol, T. Koide, and D. H. Rischke, Dissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theory, Phys. Rev. Lett. 105, 162501 (2010), arXiv:1004.5013 [nucl-th] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.