Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Coherent heat transfer leads to genuine quantum enhancement in the performances of continuous engines (2404.05799v2)

Published 8 Apr 2024 in quant-ph, cond-mat.mes-hall, cond-mat.stat-mech, physics.app-ph, and physics.optics

Abstract: Conventional continuous quantum heat engines with incoherent heat transfer perform poorly as they exploit two-body interactions between the system and hot or cold baths, thus having limited capability to outperform their classical counterparts. We introduce distinct continuous quantum heat engines that utilize coherent heat transfer with baths, yielding genuine quantum enhancement in performance. These coherent engines consist of one qutrit system and two photonic baths and enable coherent heat transfer via two-photon transitions involving three-body interactions between the system and hot and cold baths. We demonstrate that coherent engines deliver significantly higher power output with much greater reliability, i.e., lower signal-to-noise ratio of the power, by hundreds of folds over their incoherent counterparts. Importantly, coherent engines can operate close to or at the maximal achievable reliability allowed by the quantum thermodynamic uncertainty relation. Moreover, coherent engines manifest more nonclassical features than incoherent engines because they violate the classical thermodynamic uncertainty relation by a greater amount and for a wider range of parameters. These genuine enhancements in the performance of coherent engines are directly attributed to their capacity to harness higher energetic coherence for the resonant driving case. The experimental feasibility of coherent engines and the improved understanding of how quantum properties can enhance performance may find applications in quantum-enabled technologies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. Alexia Auffèves, “Quantum technologies need a quantum energy initiative,” PRX Quantum 3, 020101 (2022).
  2. C. Jarzynski, “Nonequilibrium equality for free energy differences,” Physical Review Letters 78, 2690 (1997).
  3. Gavin E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences,” Physical Review E 60, 2721 (1999).
  4. Michele Campisi, Peter Hänggi,  and Peter Talkner, “Colloquium: Quantum fluctuation relations: Foundations and applications,” Reviews of Modern Physics 83, 771 (2011).
  5. Fernando G. S. L. Brandão, Michał Horodecki, Jonathan Oppenheim, Joseph M. Renes,  and Robert W. Spekkens, “Resource theory of quantum states out of thermal equilibrium,” Physical Review Letters 111, 250404 (2013).
  6. Michał Horodecki and Jonathan Oppenheim, “Fundamental limitations for quantum and nanoscale thermodynamics,” Nature Communications 4, 2059 (2013).
  7. Paul Skrzypczyk, Anthony J. Short,  and Sandu Popescu, “Work extraction and thermodynamics for individual quantum systems,” Nature Communications 5, 4185 (2014).
  8. Fernando Brandão, Michał Horodecki, Nelly Ng, Jonathan Oppenheim,  and Stephanie Wehner, “The second laws of quantum thermodynamics,” Proceedings of the National Academy of Sciences 112, 3275 (2015).
  9. Matteo Lostaglio, David Jennings,  and Terry Rudolph, “Description of quantum coherence in thermodynamic processes requires constraints beyond free energy,” Nature Communications 6, 6383 (2015).
  10. Álvaro M. Alhambra, Lluis Masanes, Jonathan Oppenheim,  and Christopher Perry, “Fluctuating work: From quantum thermodynamical identities to a second law equality,” Physical Review X 6, 041017 (2016).
  11. Manabendra N. Bera, Arnau Riera, Maciej Lewenstein,  and Andreas Winter, “Generalized laws of thermodynamics in the presence of correlations,” Nature Communications 8, 2180 (2017).
  12. Carlo Sparaciari, Jonathan Oppenheim,  and Tobias Fritz, “Resource theory for work and heat,” Physical Review A 96, 052112 (2017).
  13. Johan Åberg, “Fully quantum fluctuation theorems,” Physical Review X 8, 011019 (2018).
  14. Gilad Gour, David Jennings, Francesco Buscemi, Runyao Duan,  and Iman Marvian, “Quantum majorization and a complete set of entropic conditions for quantum thermodynamics,” Nature Communications 9, 5352 (2018).
  15. Markus P. Müller, “Correlating thermal machines and the second law at the nanoscale,” Physical Review X 8, 041051 (2018).
  16. Raam Uzdin and Saar Rahav, “Global passivity in microscopic thermodynamics,” Physical Review X 8, 021064 (2018).
  17. Manabendra Nath Bera, Arnau Riera, Maciej Lewenstein, Zahra Baghali Khanian,  and Andreas Winter, “Thermodynamics as a Consequence of Information Conservation,” Quantum 3, 121 (2019).
  18. Mohit Lal Bera, Maciej Lewenstein,  and Manabendra Nath Bera, “Attaining Carnot efficiency with quantum and nanoscale heat engines,” npj Quantum Information 7, 31 (2021).
  19. Mohit Lal Bera, Sergi Julià-Farré, Maciej Lewenstein,  and Manabendra Nath Bera, “Quantum heat engines with Carnot efficiency at maximum power,” Physical Review Research 4, 013157 (2022).
  20. Zahra Baghali Khanian, Manabendra Nath Bera, Arnau Riera, Maciej Lewenstein,  and Andreas Winter, “Resource theory of heat and work with non-commuting charges,” Annales Henri Poincaré 24, 1725–1777 (2023).
  21. Mohit Lal Bera, Tanmoy Pandit, Kaustav Chatterjee, Varinder Singh, Maciej Lewenstein, Utso Bhattacharya,  and Manabendra Nath Bera, “Steady-state quantum thermodynamics with synthetic negative temperatures,” Physical Review Research 6, 013318 (2024).
  22. H. E. D. Scovil and E. O. Schulz-DuBois, “Three-level masers as heat engines,” Physical Review Letters 2, 262 (1959).
  23. E. Boukobza and D. J. Tannor, “Thermodynamic analysis of quantum light amplification,” Physical Review A 74, 063822 (2006a).
  24. E. Boukobza and D. J. Tannor, “Thermodynamics of bipartite systems: Application to light-matter interactions,” Physical Review A 74, 063823 (2006b).
  25. E. Boukobza and D. J. Tannor, “Three-level systems as amplifiers and attenuators: A thermodynamic analysis,” Physical Review Letters 98, 240601 (2007).
  26. Ronnie Kosloff and Amikam Levy, “Quantum heat engines and refrigerators: Continuous devices,” Annual Review of Physical Chemistry 65, 365 (2014).
  27. Nathan M. Myers, Obinna Abah,  and Sebastian Deffner, “Quantum thermodynamic devices: From theoretical proposals to experimental reality,” AVS Quantum Science 4, 027101 (2022).
  28. Loris Maria Cangemi, Chitrak Bhadra,  and Amikam Levy, “Quantum engines and refrigerators,”   (2023), arXiv:2302.00726 .
  29. Jiteng Sheng, Cheng Yang,  and Haibin Wu, “Realization of a coupled-mode heat engine with cavity-mediated nanoresonators,” Science Advances 7, eabl7740 (2021).
  30. James Klatzow, Jonas N. Becker, Patrick M. Ledingham, Christian Weinzetl, Krzysztof T. Kaczmarek, Dylan J. Saunders, Joshua Nunn, Ian A. Walmsley, Raam Uzdin,  and Eilon Poem, “Experimental demonstration of quantum effects in the operation of microscopic heat engines,” Physical Review Letters 122, 110601 (2019).
  31. Johannes Roßnagel, Samuel T. Dawkins, Karl N. Tolazzi, Obinna Abah, Eric Lutz, Ferdinand Schmidt-Kaler,  and Kilian Singer, “A single-atom heat engine,” Science 352, 325 (2016).
  32. Quentin Bouton, Jens Nettersheim, Sabrina Burgardt, Daniel Adam, Eric Lutz,  and Artur Widera, “A quantum heat engine driven by atomic collisions,” Nature Communications 12, 2063 (2021).
  33. John P. S. Peterson, Tiago B. Batalhão, Marcela Herrera, Alexandre M. Souza, Roberto S. Sarthour, Ivan S. Oliveira,  and Roberto M. Serra, “Experimental characterization of a spin quantum heat engine,” Physical Review Letters 123, 240601 (2019).
  34. Clodoaldo I. L. de Araujo, Pauli Virtanen, Maria Spies, Carmen González-Orellana, Samuel Kerschbaumer, Maxim Ilyn, Celia Rogero, Tero T. Heikkilä, Francesco Giazotto,  and E. Strambini, “Superconducting spintronic heat engine,”   (2023), arXiv:2310.18132 .
  35. Saar Rahav, Upendra Harbola,  and Shaul Mukamel, “Heat fluctuations and coherences in a quantum heat engine,” Physical Review A 86, 043843 (2012).
  36. Alex Arash Sand Kalaee, Andreas Wacker,  and Patrick P. Potts, “Violating the thermodynamic uncertainty relation in the three-level maser,” Physical Review E 104, L012103 (2021).
  37. Pablo Bayona-Pena and Kazutaka Takahashi, “Thermodynamics of a continuous quantum heat engine: Interplay between population and coherence,” Physical Review A 104, 042203 (2021).
  38. Varinder Singh, Vahid Shaghaghi, Özgür E. Müstecaplıoğlu,  and Dario Rosa, “Thermodynamic uncertainty relation in nondegenerate and degenerate maser heat engines,” Physical Review A 108, 032203 (2023).
  39. Marlan O. Scully, Kimberly R. Chapin, Konstantin E. Dorfman, Moochan Barnabas Kim,  and Anatoly Svidzinsky, “Quantum heat engine power can be increased by noise-induced coherence,” Proceedings of the National Academy of Sciences 108, 15097 (2011).
  40. Jaegon Um, Konstantin E. Dorfman,  and Hyunggyu Park, “Coherence-enhanced quantum-dot heat engine,” Physical Review Research 4, L032034 (2022).
  41. Marlan O. Scully, “Quantum photocell: Using quantum coherence to reduce radiative recombination and increase efficiency,” Physical Review Letters 104, 207701 (2010).
  42. Konstantin E. Dorfman, Dazhi Xu,  and Jianshu Cao, “Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence,” Physical Review E 97, 042120 (2018).
  43. Andre C. Barato and Udo Seifert, “Thermodynamic uncertainty relation for biomolecular processes,” Physical Review Letters 114, 158101 (2015).
  44. Patrick Pietzonka and Udo Seifert, “Universal trade-off between power, efficiency, and constancy in steady-state heat engines,” Physical Review Letters 120, 190602 (2018).
  45. Krzysztof Ptaszyński, “Coherence-enhanced constancy of a quantum thermoelectric generator,” Physical Review B 98, 085425 (2018).
  46. Junjie Liu and Dvira Segal, “Thermodynamic uncertainty relation in quantum thermoelectric junctions,” Physical Review E 99, 062141 (2019).
  47. Soham Pal, Sushant Saryal, Dvira Segal, T. S. Mahesh,  and Bijay Kumar Agarwalla, “Experimental study of the thermodynamic uncertainty relation,” Physical Review Research 2, 022044 (2020).
  48. Antoine Rignon-Bret, Giacomo Guarnieri, John Goold,  and Mark T. Mitchison, “Thermodynamics of precision in quantum nanomachines,” Physical Review E 103, 012133 (2021).
  49. Tan Van Vu and Keiji Saito, “Thermodynamics of precision in markovian open quantum dynamics,” Physical Review Letters 128, 140602 (2022).
  50. Leonardo da Silva Souza, Gonzalo Manzano, Rosario Fazio,  and Fernando Iemini, “Collective effects on the performance and stability of quantum heat engines,” Physical Review E 106, 014143 (2022).
  51. Kacper Prech, Philip Johansson, Elias Nyholm, Gabriel T. Landi, Claudio Verdozzi, Peter Samuelsson,  and Patrick P. Potts, “Entanglement and thermokinetic uncertainty relations in coherent mesoscopic transport,” Physical Review Research 5, 023155 (2023).
  52. Gonzalo Manzano and Rosa López, “Quantum-enhanced performance in superconducting andreev reflection engines,” Physical Review Research 5, 043041 (2023).
  53. Yoshihiko Hasegawa, “Quantum thermodynamic uncertainty relation for continuous measurement,” Physical Review Letters 125, 050601 (2020).
  54. Samuel L. Braunstein and Carlton M. Caves, “Statistical distance and the geometry of quantum states,” Physical Review Letters 72, 3439 (1994).
  55. Yoshihiko Hasegawa, “Unifying speed limit, thermodynamic uncertainty relation and heisenberg principle via bulk-boundary correspondence,” Nature Communications 14, 2828 (2023).
  56. Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
  57. Christopher C. Gerry and J. H. Eberly, “Dynamics of a raman coupled model interacting with two quantized cavity fields,” Physical Review A 42, 6805 (1990).
  58. Christopher C. Gerry and H. Huang, “Dynamics of a two-atom raman coupled model interacting with two quantized cavity fields,” Physical Review A 45, 8037 (1992).
  59. Ying Wu, “Effective raman theory for a three-level atom in the ΛΛ\Lambdaroman_Λ configuration,” Physical Review A 54, 1586 (1996).
  60. T. Baumgratz, M. Cramer,  and M. B. Plenio, “Quantifying coherence,” Physical Review Letters 113, 140401 (2014).
  61. Pierre Meystre and Marlan O Scully, Quantum optics (Springer, 2021).
  62. Jonas Larson and Themistoklis Mavrogordatos, The Jaynes–Cummings model and its descendants: modern research directions (IoP Publishing, 2021).
  63. Mohammed Ali Aamir, Claudia Castillo Moreno, Simon Sundelin, Janka Biznárová, Marco Scigliuzzo, Kowshik Erappaji Patel, Amr Osman, D. P. Lozano, Ingrid Strandberg,  and Simone Gasparinetti, “Engineering symmetry-selective couplings of a superconducting artificial molecule to microwave waveguides,” Physical Review Letters 129, 123604 (2022).
  64. Maximilian Zanner, Tuure Orell, Christian M. F. Schneider, Romain Albert, Stefan Oleschko, Mathieu L. Juan, Matti Silveri,  and Gerhard Kirchmair, “Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics,” Nature Physics 18, 538 (2022).
  65. A. Gauguet, T. E. Mehlstäubler, T. Lévèque, J. Le Gouët, W. Chaibi, B. Canuel, A. Clairon, F. Pereira Dos Santos,  and A. Landragin, “Off-resonant raman transition impact in an atom interferometer,” Physical Review A 78, 043615 (2008).
  66. Sofus L. Kristensen, Matt Jaffe, Victoria Xu, Cristian D. Panda,  and Holger Müller, “Raman transitions driven by phase-modulated light in a cavity atom interferometer,” Physical Review A 103, 023715 (2021).
  67. Florian Böhm, Niko Nikolay, Sascha Neinert, Christoph E. Nebel,  and Oliver Benson, “Ground-state microwave-stimulated raman transitions and adiabatic spin transfer in the N15superscriptN15{}^{15}\mathrm{N}start_FLOATSUPERSCRIPT 15 end_FLOATSUPERSCRIPT roman_N nitrogen vacancy center,” Physical Review B 104, 035201 (2021).
  68. Daniel A. Lidar, “Lecture notes on the theory of open quantum systems,”   (2020), arXiv:1902.00967 .
  69. Massimiliano Esposito, Upendra Harbola,  and Shaul Mukamel, “Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems,” Reviews of Modern Physics 81, 1665 (2009).
  70. M Bruderer, L D Contreras-Pulido, M Thaller, L Sironi, D Obreschkow,  and M B Plenio, “Inverse counting statistics for stochastic and open quantum systems: the characteristic polynomial approach,” New Journal of Physics 16, 033030 (2014).
  71. Gabriel T. Landi, Michael J. Kewming, Mark T. Mitchison,  and Patrick P. Potts, “Current fluctuations in open quantum systems: Bridging the gap between quantum continuous measurements and full counting statistics,” PRX Quantum 5, 020201 (2024).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 6 likes.