Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provably Convergent and Robust Newton-Raphson Method: A New Dawn in Primitive Variable Recovery for Relativistic MHD (2404.05531v1)

Published 8 Apr 2024 in math.NA, astro-ph.IM, cs.NA, physics.comp-ph, and physics.plasm-ph

Abstract: A long-standing and formidable challenge faced by all conservative schemes for relativistic magnetohydrodynamics (RMHD) is the recovery of primitive variables from conservative ones. This process involves solving highly nonlinear equations subject to physical constraints. An ideal solver should be "robust, accurate, and fast -- it is at the heart of all conservative RMHD schemes," as emphasized in [S.C. Noble et al., ApJ, 641:626-637, 2006]. Despite over three decades of research, seeking efficient solvers that can provably guarantee stability and convergence remains an open problem. This paper presents the first theoretical analysis for designing a robust, physical-constraint-preserving (PCP), and provably (quadratically) convergent Newton-Raphson (NR) method for primitive variable recovery in RMHD. Our key innovation is a unified approach for the initial guess, devised based on sophisticated analysis. It ensures that the NR iteration consistently converges and adheres to physical constraints. Given the extreme nonlinearity and complexity of the iterative function, the theoretical analysis is highly nontrivial and technical. We discover a pivotal inequality for delineating the convexity and concavity of the iterative function and establish theories to guarantee the PCP property and convergence. We also develop theories to determine a computable initial guess within a theoretical "safe" interval. Intriguingly, we find that the unique positive root of a cubic polynomial always falls within this interval. Our PCP NR method is versatile and can be seamlessly integrated into any RMHD scheme that requires the recovery of primitive variables, potentially leading to a broad impact in this field. As an application, we incorporate it into a discontinuous Galerkin method, resulting in fully PCP schemes. Several numerical experiments demonstrate the efficiency and robustness of the PCP NR method.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com