Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Linear Codes Whose Hermitian Hulls are MD (2404.04993v1)

Published 7 Apr 2024 in cs.IT and math.IT

Abstract: Hermitian hulls of linear codes are interesting for theoretical and practical reasons alike. In terms of recent application, linear codes whose hulls meet certain conditions have been utilized as ingredients to construct entanglement-assisted quantum error correcting codes. This family of quantum codes is often seen as a generalization of quantum stabilizer codes. Theoretically, compared with the Euclidean setup, the Hermitian case is much harder to deal with. Hermitian hulls of MDS linear codes with low dimensions have been explored, mostly from generalized Reed-Solomon codes. Characterizing Hermitian hulls which themselves are MDS appears to be more involved and has not been extensively studied. This paper introduces some tools to study linear codes whose Hermitian hulls are MDS. Using the tools, we then propose explicit constructions of such codes. We consider Hermitian hulls of both Reed-Solomon and non Reed-Solomon types of linear MDS codes. We demonstrate that, given the same Hermitian hull dimensions, the codes from our constructions have dimensions which are larger than those in the literature.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. N. Sendrier, “Finding the permutation between equivalent linear codes: The support splitting algorithm,” IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1193–1203, July 2000.
  2. J. Bringer, C. Carlet, H. Chabanne, S. Guilley, and H. Maghrebi, “Orthogonal direct sum masking,” in Information Security Theory and Practice: Securing the Internet of Things.   Springer, 2014, pp. 40–56.
  3. C. Carlet and S. Guilley, “Complementary dual codes for counter-measures to side-channel attacks,” Adv. Math. Commun., vol. 10, no. 1, pp. 131–150, Mar. 2016.
  4. A. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane, “Quantum error correction via codes over G⁢F⁢(4)𝐺𝐹4GF(4)italic_G italic_F ( 4 ),” IEEE Trans. Inform. Theory, vol. 44, no. 4, pp. 1369–1387, July 1998.
  5. D. Poulin, “Stabilizer formalism for operator quantum error correction,” Phys. Rev. Lett., vol. 95, no. 23, p. 230504, Dec. 2005.
  6. T. Brun, I. Devetak, and M.-H. Hsieh, “Correcting quantum errors with entanglement,” Science, vol. 314, no. 5798, pp. 436–439, Oct. 2006.
  7. E. Assmus and J. Key, “Affine and projective planes,” Discrete Math., vol. 83, no. 2-3, pp. 161–187, Aug. 1990.
  8. J. L. Massey, “Linear codes with complementary duals,” Discrete Math., vol. 106-107, pp. 337–342, Sep. 1992.
  9. B. Chen and H. Liu, “New constructions of MDS codes with complementary duals,” IEEE Trans. Inform. Theory, vol. 64, no. 8, pp. 5776–5782, Aug. 2018.
  10. C. Li, C. Ding, and S. Li, “LCD cyclic codes over finite fields,” IEEE Trans. Inform. Theory, vol. 63, no. 7, pp. 4344–4356, July 2017.
  11. L. Jin, “Construction of MDS codes with complementary duals,” IEEE Trans. Inform. Theory, vol. 63, no. 5, pp. 2843–2847, May 2017.
  12. L. Jin and C. Xing, “Algebraic geometry codes with complementary duals exceed the asymptotic Gilbert-Varshamov Bound,” IEEE Trans. Inform. Theory, vol. 64, no. 9, pp. 6277–6282, Sep. 2018.
  13. L. Sok, M. Shi, and P. Solé, “Constructions of optimal LCD codes over large finite fields,” Finite Fields their Appl., vol. 50, pp. 138–153, Mar. 2018.
  14. H. Liu and S. Liu, “Construction of MDS twisted Reed-Solomon codes and LCD MDS codes,” Des. Codes Cryptogr., vol. 89, no. 9, pp. 2051–2065, June 2021.
  15. M. Shi, F. Özbudak, L. Xu, and P. Solé, “LCD codes from tridiagonal Toeplitz matrices,” Finite Fields their Appl., vol. 75, p. 101892, Oct. 2021.
  16. C. Carlet, S. Mesnager, C. Tang, Y. Qi, and R. Pellikaan, “Linear codes over 𝔽qsubscript𝔽𝑞\mathbb{F}_{q}blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT are equivalent to LCD codes for q>3𝑞3q>3italic_q > 3,” IEEE Trans. Inform. Theory, vol. 64, no. 4, pp. 3010–3017, Apr. 2018.
  17. Y. Wu, J. Y. Hyun, and Y. Lee, “New LCD MDS codes of non-Reed-Solomon type,” IEEE Trans. Inform. Theory, vol. 67, no. 8, pp. 5069–5078, Aug. 2021.
  18. Z. Zhou, X. Li, C. Tang, and C. Ding, “Binary LCD codes and self-orthogonal codes from a generic construction,” IEEE Trans. Inform. Theory, vol. 65, no. 1, pp. 16–27, Jan. 2019.
  19. S. Bouyuklieva, “Optimal binary LCD codes,” Des. Codes Cryptogr., vol. 89, no. 11, pp. 2445–2461, Sep. 2021.
  20. M. Harada, “Construction of binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes,” Des. Codes Cryptogr., vol. 89, no. 10, pp. 2295–2312, Aug. 2021.
  21. L. Lu, X. Zhan, S. Yang, and H. Cao, “Optimal quaternary Hermitian LCD codes,” arXiv:2010.10166v1, Oct. 2020. [Online]. Available: https://arxiv.org/pdf/2010.10166.pdf
  22. M. Araya, M. Harada, and K. Saito, “Quaternary Hermitian linear complementary dual codes,” IEEE Trans. Inform. Theory, vol. 66, no. 5, pp. 2751–2759, May 2020.
  23. P. Lisoněk and V. Singh, “Quantum codes from nearly self-orthogonal quaternary linear codes,” Des. Codes Cryptogr., vol. 73, no. 2, pp. 417–424, Feb. 2014.
  24. S. A. Aly and P. K. Sarvepalli, “Subsystem codes,” 44th Annual Allerton Conference on Communication, Control, and Computing, 2006.
  25. M. F. Ezerman, S. Ling, B. Özkaya, and P. Solé, “Good stabilizer codes from quasi-cyclic codes over 𝔽4subscript𝔽4\mathbb{F}_{4}blackboard_F start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and 𝔽9subscript𝔽9\mathbb{F}_{9}blackboard_F start_POSTSUBSCRIPT 9 end_POSTSUBSCRIPT,” in Proc. Int. Symposium Inform. Theory (ISIT).   Paris, France: IEEE, 07–12 July 2019, pp. 2898–2902. [Online]. Available: https://ieeexplore.ieee.org/document/8849416
  26. K. Guenda, S. Jitman, and T. A. Gulliver, “Constructions of good entanglement-assisted quantum error correcting codes,” Des. Codes Cryptogr., vol. 86, no. 1, pp. 121–136, Jan. 2017.
  27. G. Luo, X. Cao, and X. Chen, “MDS codes with hulls of arbitrary dimensions and their quantum error correction,” IEEE Trans. Inform. Theory, vol. 65, no. 5, pp. 2944–2952, May 2019.
  28. W. Fang, F.-W. Fu, L. Li, and S. Zhu, “Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs,” IEEE Trans. Inform. Theory, vol. 66, no. 6, pp. 3527–3537, June 2020.
  29. Y. Gao, Q. Yue, X. Huang, and J. Zhang, “Hulls of generalized Reed-Solomon codes via Goppa codes and their applications to quantum codes,” IEEE Trans. Inform. Theory, vol. 67, no. 10, pp. 6619–6626, Oct. 2021.
  30. L. Li, S. Zhu, and L. Liu, “Three new classes of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes,” Quantum Inf. Process., vol. 18, no. 12, p. 366, 2019. [Online]. Available: https://doi.org/10.1007/s11128-019-2477-1
  31. F. Tian and S. Zhu, “Some new entanglement-assisted quantum error-correcting MDS codes from generalized Reed-Solomon codes,” Quantum Inf. Process., vol. 19, no. 7, p. 208, 2020. [Online]. Available: https://doi.org/10.1007/s11128-020-02704-7
  32. X. Chen, S. Zhu, W. Jiang, and G. Luo, “A new family of EAQMDS codes constructed from constacyclic codes,” Des. Codes Cryptogr., vol. 89, no. 9, pp. 2179–2193, July 2021.
  33. X. Chen, S. Zhu, and W. Jiang, “Cyclic codes and some new entanglement-assisted quantum MDS codes,” Des. Codes Cryptogr., vol. 89, no. 11, pp. 2533–2551, Sep. 2021.
  34. J. Qian and L. Zhang, “Constructions of new entanglement-assisted quantum MDS and almost MDS codes,” Quantum Inf. Process., vol. 18, no. 3, p. 71, 2019. [Online]. Available: https://doi.org/10.1007/s11128-019-2197-6
  35. ——, “On MDS linear complementary dual codes and entanglement-assisted quantum codes,” Des. Codes Cryptogr., vol. 86, no. 7, pp. 1565–1572, Sep. 2017.
  36. J. Wang, R. Li, J. Lv, G. Guo, and Y. Liu, “Entanglement-assisted quantum error correction codes with length n=q2+1𝑛superscript𝑞21n=q^{2}+1italic_n = italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 1,” Quantum Inf. Process., vol. 18, no. 9, Aug. 2019. [Online]. Available: https://link.springer.com/article/10.1007/s11128-019-2409-0
  37. C. Gan, C. Li, S. Mesnager, and H. Qian, “On hulls of some primitive BCH codes and self-orthogonal codes,” IEEE Trans. Inform. Theory, vol. 67, no. 10, pp. 6442–6455, Oct. 2021.
  38. F. R. F. Pereira, R. Pellikaan, G. G. L. Guardia, and F. M. de Assis, “Entanglement-assisted quantum codes from algebraic geometry codes,” IEEE Trans. Inform. Theory, vol. 67, no. 11, pp. 7110–7120, Nov. 2021.
  39. L. Sok, “A new construction of linear codes with one-dimensional hull,” Des. Codes Cryptogr., Jan. 2022. [Online]. Available: https://link.springer.com/article/10.1007/s10623-021-00991-4
  40. ——, “On linear codes with one-dimensional Euclidean hull and their applications to EAQECCs,” IEEE Trans. Inform. Theory, Feb. 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9720285
  41. L. Qian, X. Cao, W. Lu, and P. Solé, “A new method for constructing linear codes with small hulls,” Des. Codes Cryptogr., Oct. 2021. [Online]. Available: https://link.springer.com/article/10.1007/s10623-021-00940-1
  42. C. Li and P. Zeng, “Constructions of linear codes with one-dimensional hull,” IEEE Trans. Inform. Theory, vol. 65, no. 3, pp. 1668–1676, Mar. 2019.
  43. G. Luo, M. F. Ezerman, M. Grassl, and S. Ling, “Constructing quantum error-correcting codes that require a variable amount of entanglement,” Quantum Inf. Process., vol. 23, no. 4, 2024. [Online]. Available: https://doi.org/10.1007/s11128-023-04211-x
  44. S. A. Aly and A. Klappenecker, “Constructions of subsystem codes over finite fields,” Int. J. Quantum Inf., vol. 07, no. 05, pp. 891–912, Aug. 2009.
  45. J. Qian and L. Zhang, “New optimal subsystem codes,” Discrete Math., vol. 313, no. 21, pp. 2451–2455, Nov. 2013.
  46. Z. Du, C. Li, and S. Mesnager, “Constructions of self-orthogonal codes from hulls of BCH codes and their parameters,” IEEE Trans. Inform. Theory, vol. 66, no. 11, pp. 6774–6785, Nov. 2020.
  47. Y. Li, R. Wan, and S. Zhu, “MDS codes with Euclidean and Hermitian hulls of flexible dimensions and their applications to EAQECCs,” Quantum Inf. Process., vol. 22, no. 3, Mar. 2023.
  48. M. Grassl, “Bounds on the minimum distance of entanglement-assisted quantum codes,” Online available at http://codetables.de/EAQECC/, 2022, accessed on 2023-12-24.
  49. E. Rains, “Nonbinary quantum codes,” IEEE Trans. Inform. Theory, vol. 45, no. 6, pp. 1827–1832, Sep. 1999.
  50. H. Stichtenoth, “Self-dual Goppa codes,” Journal of Pure and Applied Algebra, vol. 55, no. 1-2, pp. 199–211, Nov. 1988.
  51. P. Delsarte, “On subfield subcodes of modified Reed-Solomon codes (corresp.),” IEEE Trans. Inform. Theory, vol. 21, no. 5, pp. 575–576, Sep. 1975.
  52. C. Hartmann and K. Tzeng, “Generalizations of the BCH bound,” Information and Control, vol. 20, no. 5, pp. 489–498, June 1972.
  53. S. Ball and R. Vilar, “Determining when a truncated generalised Reed-Solomon code is Hermitian self-orthogonal,” IEEE Trans. Inform. Theory, vol. 68, no. 6, pp. 3796–3805, June 2022.
  54. H. Chen, “On the hull-variation problem of equivalent linear codes,” IEEE Trans. Inform. Theory, vol. 69, no. 5, pp. 2911–2922, May 2023.
  55. L. Sok, “New families of quantum stabilizer codes from Hermitian self-orthogonal algebraic geometry codes,” arXiv:2110.00769v2, Sep. 2021. [Online]. Available: https://arxiv.org/pdf/2110.00769.pdf
  56. D. E. Gottesman, “Stabilizer codes and quantum error correction,” Ph.D. dissertation, California Institute of Technology, 1997. [Online]. Available: https://resolver.caltech.edu/CaltechETD:etd-07162004-113028
  57. A. Ketkar, A. Klappenecker, S. Kumar, and P. Sarvepalli, “Nonbinary stabilizer codes over finite fields,” IEEE Trans. Inform. Theory, vol. 52, no. 11, pp. 4892–4914, Nov. 2006.
  58. C. Galindo, F. Hernando, R. Matsumoto, and D. Ruano, “Entanglement-assisted quantum error-correcting codes over arbitrary finite fields,” Quantum Inf. Process., vol. 18, no. 4, p. 116, 2019. [Online]. Available: https://doi.org/10.1007/s11128-019-2234-5
  59. M. Grassl, F. Huber, and A. Winter, “Entropic proofs of Singleton bounds for quantum error-correcting codes,” IEEE Trans. Inform. Theory, vol. 68, no. 6, pp. 3942–3950, June 2022.
  60. M. Grassl, T. Beth, and M. Rötteler, “On optimal quantum codes,” Int. J. Quantum Inf., vol. 02, no. 01, pp. 55–64, Mar. 2004.
  61. G. G. L. Guardia, “New quantum MDS codes,” IEEE Trans. Inform. Theory, vol. 57, no. 8, pp. 5551–5554, Aug. 2011.
  62. M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. Schindler, and T. Monz, “A universal qudit quantum processor with trapped ions,” Nat. Phys., vol. 18, no. 9, pp. 1053–1057, Sep 2022.
  63. M. Sarı and M. E. Köroğlu, “New entanglement-assisted quantum MDS codes with maximal entanglement,” Int. J. Theor. Phys., vol. 60, no. 1, pp. 243–253, 2021.
  64. J. Fan, H. Chen, and J. Xu, “Constructions of q𝑞qitalic_q-ary entanglement-assisted quantum MDS codes with minimum distance greater than q+1𝑞1q+1italic_q + 1,” Quantum Inform. Comput., vol. 16, no. 5&6, pp. 423–434, Apr. 2016.
  65. L. Wang, S. Zhu, and Z. Sun, “Entanglement-assisted quantum MDS codes from cyclic codes,” Quantum Inf. Process., vol. 19, no. 2, Jan. 2020.
  66. J. Chen, Y. Huang, C. Feng, and R. Chen, “Entanglement-assisted quantum MDS codes constructed from negacyclic codes,” Quantum Inf. Process., vol. 16, no. 12, Nov. 2017.
  67. M. Cao, “MDS codes with Galois hulls of arbitrary dimensions and the related Entanglement-Assisted quantum error correction,” IEEE Trans. Inform. Theory, vol. 67, no. 12, pp. 7964–7984, Dec. 2021.
  68. H. Islam, and A. L. Horlemann, “Galois hull dimensions of Gabidulin codes,” in Proc. IEEE Information Theory Workshop (ITW).   Saint-Malo, France: IEEE, 23–28 April 2023, pp. 42–48.
  69. X. Liu, L. Yu, and P. Hu, “New entanglement-assisted quantum codes from k𝑘kitalic_k-Galois dual codes,” Finite Fields Their Appl., vol. 55, pp. 21–32, Jan. 2019. [Online]. Available: http://dx.doi.org/10.1016/j.ffa.2018.09.001
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com