Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MDS Codes with Euclidean and Hermitian Hulls of Flexible Dimensions and Their Applications to EAQECCs (2206.06615v2)

Published 14 Jun 2022 in cs.IT and math.IT

Abstract: The hull of a linear code is the intersection of itself with its dual code with respect to certain inner product. Both Euclidean and Hermitian hulls are of theorical and practical significance. In this paper, we construct several new classes of MDS codes via (extended) generalized Reed-Solomon (GRS) codes and determine their Euclidean or Hermitian hulls. Specifically, four new classes of MDS codes with Hermitian hulls of flexible dimensions and six new classes of MDS codes with Euclidean hulls of flexible dimensions are constructed. For the former, we further construct four new classes of entanglement-assisted quantum error-correcting codes (EAQECCs) and four new classes of MDS EAQECCs of length $n>q+1$. For the latter, we also give some examples on Euclidean self-orthogonal and one-dimensional Euclidean hull MDS codes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.