Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Demonstration of quantum network protocols over a 14-km urban fiber link (2404.04958v1)

Published 7 Apr 2024 in quant-ph and physics.optics

Abstract: We report on the implementation of quantum entanglement distribution and quantum state teleportation over a 14.4-km urban dark-fiber link, which is partially underground, partially overhead, and patched in several stations. We characterize the link for its use as a quantum channel and realize its active polarization stabilization. Using a type-II cavity-enhanced SPDC photon pair source, a ${40}$Ca${+}$ single-ion quantum memory, and quantum frequency conversion to the telecom C-band, we demonstrate photon-photon entanglement, ion-photon entanglement, and teleportation of a qubit state from the ion onto a remote telecom photon, all realized over the urban fiber link.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. H. Kimble, The quantum internet, Nature 453, 1023–1030 (2008).
  2. S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, eaam9288 (2018).
  3. J. Shi and S. Shen, A clock synchronization method based on quantum entanglement, Scientific Reports 12, 10185 (2022).
  4. Z. Zhang and Q. Zhuang, Distributed quantum sensing, Quantum Science and Technology 6, 043001 (2021).
  5. J. C. Pelayo, K. Gietka, and T. Busch, Distributed quantum sensing with optical lattices, Phys. Rev. A 107, 033318 (2023).
  6. J. Wang, B. J. Rollick, and B. A. Huberman, Time-interleaved c-band co-propagation of quantum and classical channels (2023), arXiv:2304.13828 [quant-ph] .
  7. N. Sangouard, R. Dubessy, and C. Simon, Quantum repeaters based on single trapped ions, Phys. Rev. A 79, 042340 (2009).
  8. M. A. Uman, The Art and Science of Lightning Protection (Cambridge University Press, 2008).
  9. Y.-Y. Ding and H. e. a. Chen, Polarization variations in installed fibers and their influence on quantum key distribution systems, Opt. Express 25, 27923 (2017).
  10. N. Gisin, Statistics of polarization dependent losses, Optics Communications 114, 399 (1995a).
  11. F. Hocke, Long Distance Atom Photon Entanglement, Master’s thesis, LMU München (2007).
  12. (2023), map taken from OpenStreetMap on 2023-01-27 www.openstreetmap.org/copyright.
  13. M. A. Nielsen and C. I. L., Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  14. M. Lessing, Ultra-low-noise frequency synthesis, comparison and dissemination using femtosecond optical frequency combs, Ph.D. thesis, University of St. Andrews (2015).
  15. I. L. Chuang and M. A. Nielsen, Prescription for experimental determination of the dynamics of a quantum black box, J. Mod. Opt. 44, 2455 (1997).
  16. N. Gisin, Statistics of polarization dependent losses, Optics Communications 114, 399 (1995b).
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com