Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

JobFormer: Skill-Aware Job Recommendation with Semantic-Enhanced Transformer (2404.04313v1)

Published 5 Apr 2024 in cs.IR and cs.AI

Abstract: Job recommendation aims to provide potential talents with suitable job descriptions (JDs) consistent with their career trajectory, which plays an essential role in proactive talent recruitment. In real-world management scenarios, the available JD-user records always consist of JDs, user profiles, and click data, in which the user profiles are typically summarized as the user's skill distribution for privacy reasons. Although existing sophisticated recommendation methods can be directly employed, effective recommendation still has challenges considering the information deficit of JD itself and the natural heterogeneous gap between JD and user profile. To address these challenges, we proposed a novel skill-aware recommendation model based on the designed semantic-enhanced transformer to parse JDs and complete personalized job recommendation. Specifically, we first model the relative items of each JD and then adopt an encoder with the local-global attention mechanism to better mine the intra-job and inter-job dependencies from JD tuples. Moreover, we adopt a two-stage learning strategy for skill-aware recommendation, in which we utilize the skill distribution to guide JD representation learning in the recall stage, and then combine the user profiles for final prediction in the ranking stage. Consequently, we can embed rich contextual semantic representations for learning JDs, while skill-aware recommendation provides effective JD-user joint representation for click-through rate (CTR) prediction. To validate the superior performance of our method for job recommendation, we present a thorough empirical analysis of large-scale real-world and public datasets to demonstrate its effectiveness and interpretability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. The Insight Partners. (2023) Online recruitment market. [Online]. Available: https://www.theinsightpartners.com/reports/online-recruitment-market
  2. S. Bian, W. X. Zhao, Y. Song, T. Zhang, and J.-R. Wen, “Domain adaptation for person-job fit with transferable deep global match network,” in Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), 2019, pp. 4810–4820.
  3. K. Yao, J. Zhang, C. Qin, P. Wang, H. Zhu, and H. Xiong, “Knowledge enhanced person-job fit for talent recruitment,” in ICDE, Virtual, 2022, pp. 3467–3480.
  4. S. Bian, X. Chen, W. X. Zhao, K. Zhou, Y. Hou, Y. Song, T. Zhang, and J.-R. Wen, “Learning to match jobs with resumes from sparse interaction data using multi-view co-teaching network,” in Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 65–74.
  5. K. Yao, C. Qin, H. Zhu, C. Ma, J. Zhang, Y. Du, and H. Xiong, “An interactive neural network approach to keyphrase extraction in talent recruitment,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 2383–2393.
  6. L. Wu, X. He, X. Wang, K. Zhang, and M. Wang, “A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 5, pp. 4425–4445, 2022.
  7. H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep learning for recommender systems,” in Proceedings of the 1st workshop on deep learning for recommender systems, 2016, pp. 7–10.
  8. H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “Deepfm: a factorization-machine based neural network for ctr prediction,” arXiv preprint arXiv:1703.04247, 2017.
  9. X. Wang, X. He, F. Feng, L. Nie, and T.-S. Chua, “Tem: Tree-enhanced embedding model for explainable recommendation,” in Proceedings of the 2018 world wide web conference, 2018, pp. 1543–1552.
  10. C. Qin, H. Zhu, T. Xu, C. Zhu, L. Jiang, E. Chen, and H. Xiong, “Enhancing person-job fit for talent recruitment: An ability-aware neural network approach,” in SIGIR, Ann Arbor, MI, 2018, pp. 25–34.
  11. C. Zhu, H. Zhu, H. Xiong, C. Ma, F. Xie, P. Ding, and P. Li, “Person-job fit: Adapting the right talent for the right job with joint representation learning,” ACM TMIS., vol. 9, pp. 12:1–12:17, 2018.
  12. C. Wu, F. Wu, T. Qi, and Y. Huang, “Two birds with one stone: Unified model learning for both recall and ranking in news recommendation,” arXiv preprint arXiv:2104.07404, 2021.
  13. T. Qi, F. Wu, C. Wu, Y. Huang, and X. Xie, “Uni-fedrec: A unified privacy-preserving news recommendation framework for model training and online serving,” arXiv preprint arXiv:2109.05236, 2021.
  14. K. Kenthapadi, B. Le, and G. Venkataraman, “Personalized job recommendation system at linkedin: Practical challenges and lessons learned,” in Proceedings of the eleventh ACM conference on recommender systems, 2017, pp. 346–347.
  15. Y.-C. Chou and H.-Y. Yu, “Based on the application of ai technology in resume analysis and job recommendation,” in 2020 IEEE International Conference on Computational Electromagnetics (ICCEM).   IEEE, 2020, pp. 291–296.
  16. M. Diaby, E. Viennet, and T. Launay, “Toward the next generation of recruitment tools: an online social network-based job recommender system,” in Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2013, pp. 821–828.
  17. Y. Lu, S. El Helou, and D. Gillet, “A recommender system for job seeking and recruiting website,” in Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 963–966.
  18. K. V. Deshpande, S. Pan, and J. R. Foulds, “Mitigating demographic bias in ai-based resume filtering,” in Adjunct publication of the 28th ACM conference on user modeling, adaptation and personalization, 2020, pp. 268–275.
  19. X. Zhang, Y. Zhou, Y. Ma, B.-C. Chen, L. Zhang, and D. Agarwal, “Glmix: Generalized linear mixed models for large-scale response prediction,” in Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp. 363–372.
  20. G. Lu, J. Gan, J. Yin, Z. Luo, B. Li, and X. Zhao, “Multi-task learning using a hybrid representation for text classification,” Neural Computing and Applications, vol. 32, pp. 6467–6480, 2020.
  21. B. Tian, Y. Zhang, J. Wang, and C. Xing, “Hierarchical inter-attention network for document classification with multi-task learning.” in IJCAI, 2019, pp. 3569–3575.
  22. Y. Xia, T. He, X. Tan, F. Tian, D. He, and T. Qin, “Tied transformers: Neural machine translation with shared encoder and decoder,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 5466–5473.
  23. R. Weng, H. Yu, S. Huang, S. Cheng, and W. Luo, “Acquiring knowledge from pre-trained model to neural machine translation,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 05, 2020, pp. 9266–9273.
  24. J. Berant, V. Srikumar, P.-C. Chen, A. Vander Linden, B. Harding, B. Huang, P. Clark, and C. D. Manning, “Modeling biological processes for reading comprehension,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1499–1510.
  25. K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom, “Teaching machines to read and comprehend,” Advances in neural information processing systems, vol. 28, 2015.
  26. S. I. Wang and C. D. Manning, “Baselines and bigrams: Simple, good sentiment and topic classification,” in Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 2012, pp. 90–94.
  27. M. Lan, C. L. Tan, J. Su, and Y. Lu, “Supervised and traditional term weighting methods for automatic text categorization,” IEEE transactions on pattern analysis and machine intelligence, vol. 31, no. 4, pp. 721–735, 2008.
  28. C. Cherry and C. Quirk, “Discriminative, syntactic language modeling through latent svms,” in Proceedings of the 8th Conference of the Association for Machine Translation in the Americas: Research Papers, 2008, pp. 65–74.
  29. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
  30. J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179–211, 1990.
  31. D. Shen, H. Zhu, C. Zhu, T. Xu, C. Ma, and H. Xiong, “A joint learning approach to intelligent job interview assessment.” in IJCAI, vol. 18, 2018, pp. 3542–3548.
  32. R. Yan, R. Le, Y. Song, T. Zhang, X. Zhang, and D. Zhao, “Interview choice reveals your preference on the market: To improve job-resume matching through profiling memories,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 914–922.
  33. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS, Long Beach, CA, 2017, pp. 5998–6008.
  34. X. Geng and R. Ji, “Label distribution learning,” in ICDM, TX, USA, 2013, pp. 377–383.
  35. N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural network for modelling sentences,” in ACL, Baltimore, MD, 2014, pp. 655–665.
  36. S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in ICML, Lille, France, 2015, pp. 448–456.
  37. V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in ICML, Haifa, Israel, 2010, pp. 807–814.
  38. N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” JMLR, vol. 15, pp. 1929–1958, 2014.
  39. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in CVPR, Las Vegas, NV, 2016, pp. 770–778.
  40. L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR, vol. abs/1607.06450, 2016.
  41. X. Jia, W. Li, J. Liu, and Y. Zhang, “Label distribution learning by exploiting label correlations,” in AAAI, New Orleans, Louisiana, 2018, pp. 3310–3317.
  42. Y. Yang, Z. Fu, D. Zhan, Z. Liu, and Y. Jiang, “Semi-supervised multi-modal multi-instance multi-label deep network with optimal transport,” IEEE TKDE, vol. 33, pp. 696–709, 2021.
  43. S. Huang and Z. Zhou, “Multi-label learning by exploiting label correlations locally,” in AAAI, vol. 26, Toronto, Canada, 2012, pp. 949–955.
  44. F. Faghri, D. J. Fleet, J. R. Kiros, and S. Fidler, “Vse++: Improving visual-semantic embeddings with hard negatives,” arXiv preprint arXiv:1707.05612, 2017.
  45. X. Jia, Z. Li, X. Zheng, W. Li, and S. Huang, “Label distribution learning with label correlations on local samples,” IEEE TKDE, vol. 33, pp. 1619–1631, 2021.
  46. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in AISTATS, vol. 9, Sardinia, Italy, 2010, pp. 249–256.
  47. C. Wu, F. Wu, M. An, J. Huang, Y. Huang, and X. Xie, “Npa: neural news recommendation with personalized attention,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 2576–2584.
  48. ——, “Neural news recommendation with attentive multi-view learning,” arXiv preprint arXiv:1907.05576, 2019.
  49. C. Wu, F. Wu, S. Ge, T. Qi, Y. Huang, and X. Xie, “Neural news recommendation with multi-head self-attention,” in Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), 2019, pp. 6389–6394.
  50. Z. Mao, X. Zeng, and K.-F. Wong, “Neural news recommendation with collaborative news encoding and structural user encoding,” arXiv preprint arXiv:2109.00750, 2021.
  51. Q. Zhang, J. Li, Q. Jia, C. Wang, J. Zhu, Z. Wang, and X. He, “Unbert: User-news matching bert for news recommendation.” in IJCAI, 2021, pp. 3356–3362.
  52. J. Li, J. Zhu, Q. Bi, G. Cai, L. Shang, Z. Dong, X. Jiang, and Q. Liu, “Miner: multi-interest matching network for news recommendation,” in Findings of the Association for Computational Linguistics: ACL 2022, 2022, pp. 343–352.
  53. Z. Wang, Q. She, and J. Zhang, “Masknet: Introducing feature-wise multiplication to ctr ranking models by instance-guided mask,” arXiv preprint arXiv:2102.07619, 2021.
  54. F. Wang, Y. Wang, D. Li, H. Gu, T. Lu, P. Zhang, and N. Gu, “Enhancing ctr prediction with context-aware feature representation learning,” in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 343–352.
  55. W. Krichene and S. Rendle, “On sampled metrics for item recommendation (extended abstract),” in IJCAI, Virtual Event, 2021, pp. 4784–4788.
  56. L. Yin, X. Wei, Y. Sun, J. Wang, and M. J. Rosato, “A 3d facial expression database for facial behavior research,” in FGR, Southampton, UK, 2006, pp. 211–216.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zhihao Guan (7 papers)
  2. Jia-Qi Yang (12 papers)
  3. Yang Yang (884 papers)
  4. Hengshu Zhu (66 papers)
  5. Wenjie Li (183 papers)
  6. Hui Xiong (244 papers)