Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Discriminating chaotic and integrable regimes in quenched field Floquet system using saturation of Out-of-time-order correlation (2404.04177v1)

Published 5 Apr 2024 in quant-ph

Abstract: The dynamic region of out-of-time-ordered correlators (OTOCs) is a valuable discriminator of chaos in classical and semiclassical systems, as it captures the characteristic exponential growth. However, in spin systems, it does not reliably quantify chaos, exhibiting similar behavior in both integrable and chaotic systems. Instead, we leverage the saturation behavior of OTOCs as a means to differentiate between chaotic and integrable regimes. We use integrable and nonintegrable quenched field Floquet systems to describe this discriminator. In the integrable system, the saturation region of OTOCs exhibits oscillatory behavior, whereas, in the chaotic system, it shows exact saturation i.e., system gets thermalized. To gain a clearer understanding of the oscillations, we calculate the inverse participation ratio (IPR) for the normalized Fourier spectrum of OTOC. In order to further substantiate our findings, we propose the nearest-neighbor spacing distribution (NNSD) of time-dependent unitary operators. This distribution effectively differentiates chaotic and regular regions, corroborating the outcomes derived from the saturation behavior of OTOC.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. A. Larkin and Y. N. Ovchinnikov, Sov Phys JETP 28, 1200 (1969).
  2. R. Prakash and A. Lakshminarayan, Phys. Rev. B 101, 121108 (2020).
  3. D. A. Roberts and B. Swingle, Phys. Rev. Lett. 117, 091602 (2016).
  4. C.-J. Lin and O. I. Motrunich, Phys. Rev. B 97, 144304 (2018a).
  5. B. Dóra and R. Moessner, Phys. Rev. Lett. 119, 026802 (2017).
  6. J.-H. Bao and C.-Y. Zhang, Communications in Theoretical Phys. 72, 085103 (2020).
  7. W. Fu and S. Sachdev, Phys. Rev. B 94, 035135 (2016).
  8. J. Riddell and E. S. Sørensen, Phys. Rev. B 99, 054205 (2019).
  9. C.-J. Lin and O. I. Motrunich, Phys. Rev. B 97, 144304 (2018b).
  10. M. Campisi and J. Goold, Phys. Rev. E 95, 062127 (2017).
  11. R. K. Shukla and S. K. Mishra, Phys. Rev. A 106, 022403 (2022).
  12. L. Santos, Journal of Physics A: Mathematical and General 37, 4723 (2004).
  13. Y. Alhassid and R. Levine, Physical Review A 40, 5277 (1989).
  14. T. Prosen and M. Robnik, Journal of Physics A: Mathematical and General 26, 2371 (1993).
  15. E. Tsukerman, Physical Review B 95, 115121 (2017).
  16. B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
  17. R. K. Shukla, arXiv preprint arXiv:2310.14620  (2023).
  18. S. K. Mishra and A. Lakshminarayan, Europhysics Lett. 105, 10002 (2014).
  19. A. Lakshminarayan and V. Subrahmanyam, Phys. Rev. A 71, 062334 (2005).
  20. J. Novotný and P. Stránský, Phys. Rev. E 107, 054220 (2023).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube