Discriminating chaotic and integrable regimes in quenched field Floquet system using saturation of Out-of-time-order correlation (2404.04177v1)
Abstract: The dynamic region of out-of-time-ordered correlators (OTOCs) is a valuable discriminator of chaos in classical and semiclassical systems, as it captures the characteristic exponential growth. However, in spin systems, it does not reliably quantify chaos, exhibiting similar behavior in both integrable and chaotic systems. Instead, we leverage the saturation behavior of OTOCs as a means to differentiate between chaotic and integrable regimes. We use integrable and nonintegrable quenched field Floquet systems to describe this discriminator. In the integrable system, the saturation region of OTOCs exhibits oscillatory behavior, whereas, in the chaotic system, it shows exact saturation i.e., system gets thermalized. To gain a clearer understanding of the oscillations, we calculate the inverse participation ratio (IPR) for the normalized Fourier spectrum of OTOC. In order to further substantiate our findings, we propose the nearest-neighbor spacing distribution (NNSD) of time-dependent unitary operators. This distribution effectively differentiates chaotic and regular regions, corroborating the outcomes derived from the saturation behavior of OTOC.
- A. Larkin and Y. N. Ovchinnikov, Sov Phys JETP 28, 1200 (1969).
- R. Prakash and A. Lakshminarayan, Phys. Rev. B 101, 121108 (2020).
- D. A. Roberts and B. Swingle, Phys. Rev. Lett. 117, 091602 (2016).
- C.-J. Lin and O. I. Motrunich, Phys. Rev. B 97, 144304 (2018a).
- B. Dóra and R. Moessner, Phys. Rev. Lett. 119, 026802 (2017).
- J.-H. Bao and C.-Y. Zhang, Communications in Theoretical Phys. 72, 085103 (2020).
- W. Fu and S. Sachdev, Phys. Rev. B 94, 035135 (2016).
- J. Riddell and E. S. Sørensen, Phys. Rev. B 99, 054205 (2019).
- C.-J. Lin and O. I. Motrunich, Phys. Rev. B 97, 144304 (2018b).
- M. Campisi and J. Goold, Phys. Rev. E 95, 062127 (2017).
- R. K. Shukla and S. K. Mishra, Phys. Rev. A 106, 022403 (2022).
- L. Santos, Journal of Physics A: Mathematical and General 37, 4723 (2004).
- Y. Alhassid and R. Levine, Physical Review A 40, 5277 (1989).
- T. Prosen and M. Robnik, Journal of Physics A: Mathematical and General 26, 2371 (1993).
- E. Tsukerman, Physical Review B 95, 115121 (2017).
- B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56, 1469 (1993).
- R. K. Shukla, arXiv preprint arXiv:2310.14620 (2023).
- S. K. Mishra and A. Lakshminarayan, Europhysics Lett. 105, 10002 (2014).
- A. Lakshminarayan and V. Subrahmanyam, Phys. Rev. A 71, 062334 (2005).
- J. Novotný and P. Stránský, Phys. Rev. E 107, 054220 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.