Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Agnostic Tomography of Stabilizer Product States (2404.03813v2)

Published 4 Apr 2024 in quant-ph and cs.LG

Abstract: We define a quantum learning task called agnostic tomography, where given copies of an arbitrary state $\rho$ and a class of quantum states $\mathcal{C}$, the goal is to output a succinct description of a state that approximates $\rho$ at least as well as any state in $\mathcal{C}$ (up to some small error $\varepsilon$). This task generalizes ordinary quantum tomography of states in $\mathcal{C}$ and is more challenging because the learning algorithm must be robust to perturbations of $\rho$. We give an efficient agnostic tomography algorithm for the class $\mathcal{C}$ of $n$-qubit stabilizer product states. Assuming $\rho$ has fidelity at least $\tau$ with a stabilizer product state, the algorithm runs in time $n{O(1 + \log(1/\tau))} / \varepsilon2$. This runtime is quasipolynomial in all parameters, and polynomial if $\tau$ is a constant.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. A survey on the complexity of learning quantum states, 2023. arXiv:2305.20069.
  2. Scott Aaronson. Shadow Tomography of Quantum States. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, page 325–338. Association for Computing Machinery, 2018. doi:10.1145/3188745.3188802.
  3. Optimal Algorithms for Learning Quantum Phase States. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023), volume 266 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:24, 2023. doi:10.4230/LIPIcs.TQC.2023.3.
  4. Efficient Tomography of Non-Interacting-Fermion States. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023), volume 266 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:18, 2023. doi:10.4230/LIPIcs.TQC.2023.12.
  5. Koenraad M R Audenaert and Martin B Plenio. Entanglement on mixed stabilizer states: normal forms and reduction procedures. New Journal of Physics, 7(1):170, aug 2005. doi:10.1088/1367-2630/7/1/170.
  6. Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum, 3:181, 2019. doi:10.22331/q-2019-09-02-181.
  7. Fernando G. S. L. Brandão and Aram W. Harrow. Product-state approximations to quantum states. Communications in Mathematical Physics, 342(1):47–80, 2016. doi:10.1007/s00220-016-2575-1.
  8. High-temperature Gibbs states are unentangled and efficiently preparable, 2024. arXiv:2403.16850.
  9. Improved Quantum Data Analysis. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, page 1398–1411. Association for Computing Machinery, 2021. doi:10.1145/3406325.3451109.
  10. Clément L. Canonne. A short note on learning discrete distributions, 2020. arXiv:2002.11457.
  11. Efficient quantum state tomography. Nature Communications, 1(1):1–7, 2010. doi:10.1038/ncomms1147.
  12. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. The Annals of Mathematical Statistics, 27(3):642–669, 1956. doi:10.1214/aoms/1177728174.
  13. Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, 2023. arXiv:2305.13409.
  14. Improved Stabilizer Estimation via Bell Difference Sampling, 2023. arXiv:2304.13915.
  15. Schur–Weyl duality for the Clifford group with applications: Property testing, a robust Hudson theorem, and de Finetti representations. Communications in Mathematical Physics, 385(3):1325–1393, 2021. doi:10.1007/s00220-021-04118-7.
  16. Bell sampling from quantum circuits, 2023. arXiv:2306.00083v1.
  17. Sample-Optimal Tomography of Quantum States. IEEE Transactions on Information Theory, 63(9):5628–5641, 2017. doi:10.1109/TIT.2017.2719044.
  18. Predicting many properties of a quantum system from very few measurements. Nature Physics, 16(10):1050–1057, 2020. doi:10.1038/s41567-020-0932-7.
  19. Learning shallow quantum circuits, 2024. arXiv:2401.10095.
  20. Complexity Classification of Product State Problems for Local Hamiltonians, 2024. arXiv:2401.06725.
  21. Learning t-doped stabilizer states, 2023. arXiv:2305.15398v3.
  22. P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The Annals of Probability, 18(3):1269–1283, 1990. doi:10.1214/aop/1176990746.
  23. Ashley Montanaro. Learning stabilizer states by Bell sampling, 2017. arXiv:1707.04012.
  24. Efficient quantum tomography. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 899–912, 2016. doi:10.1145/2897518.2897544.
  25. Efficient quantum tomography II. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, page 962–974, New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3055399.3055454.
  26. Matrix product state representations. Quantum Info. Comput., 7(5):401–430, jul 2007. doi:10.26421/QIC7.5-6-1.
  27. Oded Regev. An efficient quantum factoring algorithm, 2024. arXiv:2308.06572.
  28. Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. doi:10.1137/S0097539795293172.
  29. Classical simulation of noninteracting-fermion quantum circuits. Phys. Rev. A, 65:032325, Mar 2002. doi:10.1103/PhysRevA.65.032325.
  30. Leslie G. Valiant. Quantum circuits that can be simulated classically in polynomial time. SIAM Journal on Computing, 31(4):1229–1254, 2002. doi:10.1137/S0097539700377025.
Citations (1)

Summary

We haven't generated a summary for this paper yet.