Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrating Hyperparameter Search into Model-Free AutoML with Context-Free Grammars (2404.03419v2)

Published 4 Apr 2024 in cs.LG and cs.AI

Abstract: Automated Machine Learning (AutoML) has become increasingly popular in recent years due to its ability to reduce the amount of time and expertise required to design and develop machine learning systems. This is very important for the practice of machine learning, as it allows building strong baselines quickly, improving the efficiency of the data scientists, and reducing the time to production. However, despite the advantages of AutoML, it faces several challenges, such as defining the solutions space and exploring it efficiently. Recently, some approaches have been shown to be able to do it using tree-based search algorithms and context-free grammars. In particular, GramML presents a model-free reinforcement learning approach that leverages pipeline configuration grammars and operates using Monte Carlo tree search. However, one of the limitations of GramML is that it uses default hyperparameters, limiting the search problem to finding optimal pipeline structures for the available data preprocessors and models. In this work, we propose an extension to GramML that supports larger search spaces including hyperparameter search. We evaluated the approach using an OpenML benchmark and found significant improvements compared to other state-of-the-art techniques.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)

Summary

We haven't generated a summary for this paper yet.