Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analytical Characterization of Epileptic Dynamics in a Bistable System (2404.03409v1)

Published 4 Apr 2024 in eess.SY, cs.SY, math.DS, and physics.bio-ph

Abstract: Epilepsy is one of the most common neurological disorders globally, affecting millions of individuals. Despite significant advancements, the precise mechanisms underlying this condition remain largely unknown, making accurately predicting and preventing epileptic seizures challenging. In this paper, we employ a bistable model, where a stable equilibrium and a stable limit cycle coexist, to describe epileptic dynamics. The equilibrium captures normal steady-state neural activity, while the stable limit cycle signifies seizure-like oscillations. The noise-driven switch from the equilibrium to the limit cycle characterizes the onset of seizures. The differences in the regions of attraction of these two stable states distinguish epileptic brain dynamics from healthy ones. We analytically construct the regions of attraction for both states. Further, using the notion of input-to-state stability, we theoretically show how the regions of attraction influence the stability of the system subject to external perturbations. Generalizing the bistable system into coupled networks, we also find the role of network parameters in shaping the regions of attraction. Our findings shed light on the intricate interplay between brain networks and epileptic activity, offering mechanistic insights into potential avenues for more predictable treatments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. C. Begley, R. G. Wagner, A. Abraham, E. Beghi, C. Newton, C.-S. Kwon, D. Labiner, and A. S. Winkler, “The global cost of epilepsy: a systematic review and extrapolation,” Epilepsia, vol. 63, no. 4, pp. 892–903, 2022.
  2. P. Jiruska, M. De Curtis, J. G. Jefferys, C. A. Schevon, S. J. Schiff, and K. Schindler, “Synchronization and desynchronization in epilepsy: Controversies and hypotheses,” The Journal of Physiology, vol. 591, no. 4, pp. 787–797, 2013.
  3. W. Löscher, H. Potschka, S. M. Sisodiya, and A. Vezzani, “Drug resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options,” Pharmacological Reviews, vol. 72, no. 3, pp. 606–638, 2020.
  4. S. L. Moshé, E. Perucca, P. Ryvlin, and T. Tomson, “Epilepsy: New advances,” The Lancet, vol. 385, no. 9971, pp. 884–898, 2015.
  5. E. M. Goldberg and D. A. Coulter, “Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction,” Nature Reviews Neuroscience, vol. 14, no. 5, pp. 337–349, 2013.
  6. R. A. Stefanescu, R. Shivakeshavan, and S. S. Talathi, “Computational models of epilepsy,” Seizure, vol. 21, no. 10, pp. 748–759, 2012.
  7. F. Wendling, P. Benquet, F. Bartolomei, and V. Jirsa, “Computational models of epileptiform activity,” Journal of Neuroscience Methods, vol. 260, pp. 233–251, 2016.
  8. F. L. Da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski, and D. N. Velis, “Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity,” Epilepsia, vol. 44, pp. 72–83, 2003.
  9. F. H. L. da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski, and D. N. Velis, “Dynamical diseases of brain systems: Different routes to epileptic seizures,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 5, pp. 540–548, 2003.
  10. E. Nozari and J. Cortés, “Oscillations and coupling in interconnections of two-dimensional brain networks,” in American Control Conference, 2019, pp. 193–198.
  11. E. Nozari, R. Planas, and J. Cortés, “Structural characterization of oscillations in brain networks with rate dynamics,” Automatica, vol. 146, p. 110653, 2022.
  12. M. McCreesh, T. Menara, and J. Cortés, “Sufficient conditions for oscillations in competitive linear-threshold brain networks,” IEEE Control Systems Letters, 2023.
  13. F. Celi, A. Allibhoy, F. Pasqualetti, and J. Cortés, “Linear-threshold dynamics for the study of epileptic events,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1405–1410, 2020.
  14. A. Allibhoy, F. Celi, F. Pasqualetti, and J. Cortés, “Optimal network interventions to control the spreading of oscillations,” IEEE Open Journal of Control Systems, vol. 1, pp. 141–151, 2022.
  15. Y. Qin, D. S. Bassett, and F. Pasqualetti, “Vibrational control of cluster synchronization: Connections with deep brain stimulation,” in 61st IEEE Conference on Decision and Control, 2022, pp. 655–661.
  16. Y. Qin, A. M. Nobili, D. S. Bassett, and F. Pasqualetti, “Vibrational stabilization of cluster synchronization in oscillator networks,” IEEE Open Journal of Control Systems, vol. 2, pp. 439–453, 2023.
  17. A. M. Nobili, Y. Qin, C. A. Avizzano, D. S. Bassett, and F. Pasqualetti, “Vibrational stabilization of complex network systems,” in American Control Conference, 2023, pp. 1980–1985.
  18. E. A. Reed, G. Ramos, P. Bogdan, and S. Pequito, “Mitigating epilepsy by stabilizing linear fractional-order systems,” in American Control Conference, 2023, pp. 2228–2233.
  19. F. Fröhlich, T. J. Sejnowski, and M. Bazhenov, “Network bistability mediates spontaneous transitions between normal and pathological brain states,” Journal of Neuroscience, vol. 30, no. 32, pp. 10 734–10 743, 2010.
  20. G. Baier, M. Goodfellow, P. N. Taylor, Y. Wang, and D. J. Garry, “The importance of modeling epileptic seizure dynamics as spatio-temporal patterns,” Frontiers in Physiology, vol. 3, p. 281, 2012.
  21. S. N. Kalitzin, D. N. Velis, and F. H. L. da Silva, “Stimulation-based anticipation and control of state transitions in the epileptic brain,” Epilepsy & Behavior, vol. 17, no. 3, pp. 310–323, 2010.
  22. O. Benjamin, T. H. Fitzgerald, P. Ashwin, and et al., “A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy,” The Journal of Mathematical Neuroscience, vol. 2, pp. 1–30, 2012.
  23. M. A. Lopes, K. Hamandi, J. Zhang, and J. L. Creaser, “The role of additive and diffusive coupling on the dynamics of neural populations,” Scientific Reports, vol. 13, no. 1, p. 4115, 2023.
  24. M. Stead, M. Bower, B. H. Brinkmann, and et al., “Microseizures and the spatiotemporal scales of human partial epilepsy,” Brain, vol. 133, no. 9, pp. 2789–2797, 2010.
Citations (1)

Summary

We haven't generated a summary for this paper yet.