Seizure detection from Electroencephalogram signals via Wavelets and Graph Theory metrics (2312.00811v1)
Abstract: Epilepsy is one of the most prevalent neurological conditions, where an epileptic seizure is a transient occurrence due to abnormal, excessive and synchronous activity in the brain. Electroencephalogram signals emanating from the brain may be captured, analysed and then play a significant role in detection and prediction of epileptic seizures. In this work we enhance upon a previous approach that relied on the differing properties of the wavelet transform. Here we apply the Maximum Overlap Discrete Wavelet Transform to both reduce signal \textit{noise} and use signal variance exhibited at differing inherent frequency levels to develop various metrics of connection between the electrodes placed upon the scalp. %The properties of both the noise reduced signal and the interconnected electrodes differ significantly during the different brain states. Using short duration epochs, to approximate close to real time monitoring, together with simple statistical parameters derived from the reconstructed noise reduced signals we initiate seizure detection. To further improve performance we utilise graph theoretic indicators from derived electrode connectivity. From there we build the attribute space. We utilise open-source software and publicly available data to highlight the superior Recall/Sensitivity performance of our approach, when compared to existing published methods.
- W. O. Tatum, G. Rubboli, P. W. Kaplan , S. M. Mirsatari, K. Radhakrishnan, D. Gloss, L. O. Caboclo, F. W. Drislane, M. Koutroumanidis, D. L. Schomer, D. Kasteleijn-Nolst Trenite, M. Cook, and S. Beniczky, “Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clinical neurophysiology : Official journal of the International Federation of Clinical Neurophysiology”, 129(5), 1056–1082. (2018), https://doi.org/10.1016/j.clinph.2018.01.019
- A. Zandi, M. Javidan, G. Dumont and R. Tafrershi, “Automated real-time epileptic seizure detection in scalp EEG recordings using an algorithm based on wavelet packet transform”, IEEE transactions on bio-medical engineering, vol. 57, pp. 1639–1651, Jul 2010, doi:10.1109/TBME.2010.2046417.
- M. Tsipouras, “Spectral information of EEG signals with respect to epilepsy classification”, EURASIP Journal on Advances in Signal Processing, Feb 2019, doi:10.1186/s13634-019-0606-8
- J. Satheesh Kumar and P. Bhuvaneswari, “Analysis of Electroencephalography (EEG) Signals and Its Categorization–A Study”, Procedia Engineering, Volume 38, pp 2525- 2536, 2012, doi.org/10.1016/j.proeng.2012.06.298
- Q. Xin, S. Hu, S. Liu, L. Zhao and Y. -D. Zhang, “An Attention-Based Wavelet Convolution Neural Network for Epilepsy EEG Classification,” in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp. 957-966, 2022, doi: 10.1109/TNSRE.2022.3166181
- L. Stanković, M. Dakovic, and T. Thayaparan. “Time-Frequency Signal Analysis With Applications.” (2013).
- S. Smith, “EEG in the diagnosis, classification, and management of patients with epilepsy”, Journal of neurology, neurosurgery, and psychiatry,Vol 76 Suppl 2, pp. 2-7, Jul 2005, 10.1136/jnnp.2005.069245
- D. Gajic, Z. Djurovic, S. Di Gennaro and F. Gustafsson, “Classification of EEG signals for detection of epileptic seizures based on wavelets and statistical pattern recognition”, Biomedical Engineering: Applications, Basis and Communications, Vol. 26, Mar 2014, doi:10.4015/S1016237214500215.
- S. Lee, J. Lim, J. Kim, J. Yang, and Y. Lee, “Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction and Euclidean distance”, Compute Methods Programs Biomed, vol. 116(1), pp. 10–25, Aug 2014, doi:10.1016/j.cmpb.2014.04.012
- K. Abualsaud, M. Mahmuddin, M. Saleh, and A. Mohamed, “Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data’, Scientific World Journal, vol. 15, Feb 2015, doi:10.1155/2015/945689
- S. Sun, C. Zhang, and D. Zhang, “An experimental evaluation of ensemble methods for EEG signal classification”, Pattern Recognition Letters, Vol 28, pp. 2157–2163, Nov 2007.
- R. Vikash, “Comparison of DFT and Wavelet based Image modification Techniques”, International Journal of Computer Science and Mobile Computing, vol. 4, pp. 61–65, Aug 2015.
- Omerhodzic, S. Avdakovic, A. Nuhanovic, K. Dizdarevic, and K. Rotim, “Energy Distribution of EEG Signal Components by Wavelet Transform”, Mar 2012, doi:10.5772/37914.
- R. Polikar, “The Wavelet Tutorial, The Engineer’s Ultimate Guide to Wavelet Analysis”. 1994, [Online]. Available: users.rowan.edu/ polikar/WTtutorial.html,
- M. K. Siddiqui, M. Z. Islam,and A. Kabir, “A novel quick seizure detection and localization through brain data mining on ECoG data set”, Neural Computing and Applications, pp. 1–14, mar 2018, doi:10.1007/s00521-018-3381-9.
- J. Elsa Jacob, G. Nair, T. Iype, and A. Cherian, “Diagnosis of Encephalopathy Based on Energies of EEG Subbands Using Discrete Wavelet Transform and Support Vector Machine”, Neurology Research International, pp. 1–9, Jul 2018, doi:10.1155/2018/1613456.
- D. Chen, S. Wan, J. Xiang, and F. Bao, “A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG”, PLOS ONE, vol. 12, Mar 2017. doi:10.1371/journal.pone.0173138.
- A. Subasi, “EEG signal classification using wavelet feature extraction and a mixture of expert model”, Expert Systems with Applications, vol 32, pp 1084-1093, May 2007, doi:10.1016/j.eswa.2006.02.005.
- S. Shrestha, R. Shrestha, and B. Thapa, “Implementing Neural Network and Multi resolution analysis in EEG signal for early detection of epilepsy”, SCITECH Nepal, vol. 14, pp. 8–16, Sept 2019, doi:10.3126/scitech.v14i1.25528.
- Q. Cao, N. Shu, L. An, P. Wang, L. Sun, M. Xia, J. Wang, G. Gong, Y.F. Zang, Y.F. Wang, and Y. He, “Probabilistic Diffusion Tractography and Graph Theory Analysis Reveal Abnormal White Matter Structural Connectivity Networks in Drug-Naive Boys with Attention Deficit/Hyperactivity Disorder”, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol. 33, pp. 10676–10687, Jun 2013, doi:10.1523/JNEUROSCI.4793-12.2013.
- N. Subramaniyam and J. Hyttinen, “Analysis of nonlinear dynamics of healthy and epileptic EEG signals using recurrence based complex network approach”, pp. 605–608, Nov 2013, doi:10.1109/NER.2013.6696007.
- F. De Vico Fallani, J. Richiardi, M. Chavez, and S. Achard, “Graph analysis of functional brain networks: Practical issues in translational neuroscience”, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol. 369, Jun 2014, doi:10.1098/rstb.2013.0521.
- S. Achard and E. Bullmore, “Efficiency and Cost of Economical Brain Functional Networks”, PLoS computational biology, vol. 3, p. e17, Mar 2007, doi:10.1371/journal.pcbi.0030017
- P. Guttorp and D. Percival, “Wavelet Analysis of Covariance With Application to Atmospheric Time Series”, Journal of Geophysical Research D: Atmospheres, Vol. 105, Apr 2000, doi:10.1029/2000JD900110.
- V. Latora and M. Marchiori, “Efficient behaviour of Small-World Networks”, Phys Rev Lett, vol. 67, Jan 2001, doi:10.17877/DE290R-11359.
- P. Grant and M. Z. Islam, “EEG Signal Processing using Wavelets for Accurate Seizure Detection through Cost Sensitive Data Mining”, arXiv, 2021. doi:10.48550/arXiv.2109.13818.
- P. Grant and M. Z. Islam, “Clustering noisy temporal data”, in 15thsuperscript15𝑡ℎ15^{th}15 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT International Conference on Advanced Data Mining and Applications, pp. 185–194, doi:10.1007/978-3-030-35231-8_ 13.
- D. Percival and A. Walden, “Wavelet Methods for Time Series Analysis”, Cambridge University Press, 2000, doi:10.1017/CBO9780511841040.
- S. Ashok and P. Mahalakshmi, “Wavelet-based feature extraction for classification of epileptic seizure EEG signal”, Journal of Medical Engineering and Technology, vol. 41, pp. 1–11, Nov 2017, doi:10.1080/03091902.2017.1394388
- S. Janjarasjitt, “Classification of the Epileptic EEGs Using the Wavelet-Based Scale Variance Feature”, Int J Appl Biomed Eng, vol. 3, pp. 19–25, Jan 2010.
- V. Latora and M. Marchiori, “Economic Small-World Behaviour in Weighted Networks”, Physics of Condensed Matter, vol. 32, Apr 2002, doi:10.1140/epjb/e2003-00095-5.
- I. Witten, M. Hall, E. Frank, G. Holmes, B. Pfahringer, and P. Reutemann, “The WEKA data mining software: An update”, SIGKDD Explorations, vol. 11, pp. 10–18, Nobv 2009, doi: 10.1145/1656274.1656278.
- R Core Team, “R: A Language and Environment for Statistical Computing”, R Foundation for Statistical Computing, ver 3.6.2 , Vienna, Austria, 2019.
- W. Constantine and D. Percival “wmtsa: Wavelet Methods for Time Series Analysis”, R package version 2.0-3, 2018, https://CRAN.R-project.org/package=wmtsa
- H. Wickham, R. François, L. Henry and K.Müller, “dplyr: A Grammar of Data Manipulation”, R package version 1.0.10., 2022, https://CRAN.R-project.org/package=dplyr
- G. Csardi G, T. Nepusz , “The igraph software package for complex network research”, InterJournal, Complex Systems 1695, 2006. https://igraph.org
- A. Goldberger,L. Amaral, L. Glass, J. Hausdorff, P.Ivanov, R. Mark, J. Mietus, G. Moody, C.K. Peng, H. Stanley, “Physiobank, physiotoolkit, and physionet : Components of a new research resource for complex physiologic signals”, Circulation 2000, 101, e215–e220, Circulation Electronic Pages, http://circ.ahajournals.org/content/101/23/e215, doi: 10.1161/01.CIR.101.23.e215.
- C.Alvarado-Rojas, M. Valderrama, A.Fouad, M. Ihle, C. Teixeira, F. Sales, A.Schulze-Bonhage, C.Adam, A. Dourado, S.Charpier, V. Navarro, M. Le Van Quyen, “Slow modulations of high- frequency activity (40-140 hz) discriminate preictal changes in human focal epilepsy”. Scientific reports 4, 4545. 2014, doi:10.1038/srep04545.
- Z. Wang and P Mengoni, “Seizure classification with selected frequency bands and EEG montages: a Natural Language Processing approach”. Brain Inf. 9, 11 (2022). https://doi.org/10.1186/s40708-022-00159-3
- D. Powers and Ailab, “Evaluation: From precision, recall and f-measure to roc, informedness, markedness and correlation” Mach. Learn. Technol vol 2, pp. 2229–3981. 2011. doi:10.9735/2229-3981.
- M. Siers and M. Z. Islam, “Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem”, Information Systems, vol. 51, pp. 62–71, Jul 2015, doi:10.1016/j.is.2015.02.006.
- S. Shrestha, R. Dahi Shrestha and B. Thapa, “Implementing neural network and multi resolution analysis in EEG signal for early detection of epilepsy”, SCITECH Nepal, vol. 14, pp. 8–16, Sep 2019, doi:10.3126/scitech.v14i1.25528
- A. Zia, M. Qureshi, M. Afzaal, M. Qureshi, N. Fayaz, “Machine learning-based EEG signals classification model for epilep- tic seizure detection” , Multimedia Tools and Applications 80, 1–29, 2021, doi:10.1007/s11042-021-10597-6
- L. Torgo, “An infra-structure for performance estimation and experimental comparison of predictive models in R”, CoRR abs/1412.0436, 2014. http://arxiv.org/abs/1412.0436
- T. Saito, M. Rehmsmeier, “The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced data set”, PloS one 10, e0118432, 2015, doi:10.1371/journal.pone.0118432
- M. Z. Islam and H. Giggins, “Knowledge Discovery through SysFor: A Systematically Developed Forest of Multiple Decision Trees”, Conferences in Research and Practice in Information Technology Series, vol. 121, Jan 2012.