Nontrivial bundles and defect operators in $n$-form gauge theories (2404.03406v2)
Abstract: In $(d+1)$-dimensional $1$-form nonabelian gauge theories, we classify nontrivial $0$-form bundles in $ \mathbb{R}{d} $, which yield configurations of $D(d-2j)$-branes wrapping $(d-2j)$-cycles $c_{d-2j} $ in $Dd$-branes. We construct the related defect operators $ U{(2j-1)} ( c_{d-2j} ) $, which are disorder operators carrying the $D(d-2j)$ charge. We compute the commutation relations between the defect operators and Chern-Simons operators on odd-dimensional closed manifolds, and derive the generalized Witten effect for $U{(2j-1)} ( c_{d-2j} ) $. When $c_{d-2j}$ is not exact, $ U{(2j-1)} ( c_{d-2j} ) $ and $ U{(2j-1)} (- c_{d-2j} ) $ can also combine into an electric $(2j-1)$-form global symmetry operator, where the $(2j-1)$-form is the Chern-Simons form. The dual magnetic $(d-2j)$-form global symmetry is generated by the $D(d-2j)$ charge. We also study nontrivial $1$-form bundles in $(d+1)$-dimensional $2$-form nonabelian gauge theories, where the defect operators are $\mathcal{U}{(2j)} ( c_{d-2j-1} ) $. With the field strength of the $1$-form taken as the flat connection of the $2$-form, we classify the topological sectors in $2$-form theories.
- L. Breen and W. Messing, “Differential geometry of GERBES,” Adv. Math. 198 (2005), 732, math/0106083.
- J. C. Baez and J. Huerta, “An Invitation to Higher Gauge Theory,” Gen. Rel. Grav. 43 (2011), 2335-2392, arXiv:1003.4485.
- L. Borsten, M. J. Farahani, B. Jurco, H. Kim, J. Narozny, D. Rist, C. Saemann and M. Wolf, “Higher Gauge Theory,” arXiv:2401.05275.
- C. Teitelboim, “Gauge Invariance for Extended Objects,” Phys. Lett. B 167 (1986), 63-68.
- M. Henneaux, “Uniqueness of the Freedman-Townsend interaction vertex for two form gauge fields,” Phys. Lett. B 368 (1996), 83-88, hep-th/9511145.
- M. Henneaux and B. Knaepen, “All consistent interactions for exterior form gauge fields,” Phys. Rev. D 56 (1997), R6076-R6080, hep-th/9706119.
- D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015), 172, arXiv:1412.5148.
- P. A. M. Dirac, “Quantised singularities in the electromagnetic field,” Proc. Roy. Soc. Lond. A 133 (1931) no.821, 60-72.
- P. A. M. Dirac, “The Theory of magnetic poles,” Phys. Rev. 74 (1948), 817-830.
- T. T. Wu and C. N. Yang, “Concept of Nonintegrable Phase Factors and Global Formulation of Gauge Fields,” Phys. Rev. D 12 (1975), 3845-3857.
- M. R. Douglas, “Branes within branes,” NATO Sci. Ser. C 520 (1999), 267-275, hep-th/9512077.
- G. ’t Hooft, “On the Phase Transition Towards Permanent Quark Confinement,” Nucl. Phys. B 138 (1978), 1-25.
- V. Borokhov, A. Kapustin and X. k. Wu, “Topological disorder operators in three-dimensional conformal field theory,” JHEP 11 (2002), 049, hep-th/0206054.
- H. Reinhardt, “On ’t Hooft’s loop operator,” Phys. Lett. B 557 (2003), 317-323, hep-th/0212264.
- A. Kapustin, “Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality,” Phys. Rev. D 74 (2006), 025005, hep-th/0501015.
- N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, “Instanton Operators in Five-Dimensional Gauge Theories,” JHEP 03 (2015), 019, arXiv:1412.2789.
- S. Hu, “Quantum Spectrum of BPS Instanton States in 5d5𝑑5d5 italic_d Guage Theories,” arXiv:2309.16394.
- E. Witten, “Dyons of Charge e theta/2 pi,” Phys. Lett. B 86 (1979), 283-287.
- M. Li, “Boundary states of D-branes and Dy strings,” Nucl. Phys. B 460 (1996), 351-361, hep-th/9510161.
- S. Gukov and E. Witten, “Gauge Theory, Ramification, And The Geometric Langlands Program,” hep-th/0612073.
- S. Gukov and E. Witten, “Rigid Surface Operators,” Adv. Theor. Math. Phys. 14 (2010) no.1, 87-178, arXiv:0804.1561.
- D. Diakonov and V. Y. Petrov, “A Formula for the Wilson Loop,” Phys. Lett. B 224 (1989), 131-135.
- K. I. Kondo and Y. Taira, “NonAbelian Stokes theorem and quark confinement in SU(N) Yang-Mills gauge theory,” Prog. Theor. Phys. 104 (2000), 1189-1265, hep-th/9911242.
- R. Matsudo and K. I. Kondo, “Non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation and its implication to quark confinement,” Phys. Rev. D 92 (2015) no.12, 125038, arXiv:1509.04891.
- A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin, “Pseudoparticle Solutions of the Yang-Mills Equations,” Phys. Lett. B 59 (1975), 85-87.
- S. Grozdanov, D. M. Hofman and N. Iqbal, “Generalized global symmetries and dissipative magnetohydrodynamics,” Phys. Rev. D 95 (2017) no.9, 096003, arXiv:1610.07392.
- F. Benini, P. S. Hsin and N. Seiberg, “Comments on global symmetries, anomalies, and duality in (2 + 1)d,” JHEP 04 (2017), 135, arXiv:1702.07035.
- L. Bhardwaj and Y. Tachikawa, “On finite symmetries and their gauging in two dimensions,” JHEP 03 (2018), 189, arXiv:1704.02330.
- D. Gaiotto and T. Johnson-Freyd, “Symmetry Protected Topological phases and Generalized Cohomology,” JHEP 05 (2019), 007, arXiv:1712.07950.
- C. M. Chang, Y. H. Lin, S. H. Shao, Y. Wang and X. Yin, “Topological Defect Lines and Renormalization Group Flows in Two Dimensions,” JHEP 01 (2019), 026, arXiv:1802.04445.
- C. Córdova, T. T. Dumitrescu and K. Intriligator, “Exploring 2-Group Global Symmetries,” JHEP 02 (2019), 184, arXiv:1802.04790.
- F. Benini, C. Córdova and P. S. Hsin, “On 2-Group Global Symmetries and their Anomalies,” JHEP 03 (2019), 118, arXiv:1803.09336.
- P. S. Hsin, H. T. Lam and N. Seiberg, “Comments on One-Form Global Symmetries and Their Gauging in 3d and 4d,” SciPost Phys. 6 (2019) no.3, 039, arXiv:1812.04716.
- N. Seiberg, “Field Theories With a Vector Global Symmetry,” SciPost Phys. 8 (2020) no.4, 050, arXiv:1909.10544.
- D. R. Morrison, S. Schafer-Nameki and B. Willett, “Higher-Form Symmetries in 5d,” JHEP 09 (2020), 024, arXiv:2005.12296.
- F. Albertini, M. Del Zotto, I. García Etxebarria and S. S. Hosseini, “Higher Form Symmetries and M-theory,” JHEP 12 (2020), 203, arXiv:2005.12831.
- L. Bhardwaj and S. Schäfer-Nameki, “Higher-form symmetries of 6d and 5d theories,” JHEP 02 (2021), 159, arXiv:2008.09600.
- B. Heidenreich, J. McNamara, M. Montero, M. Reece, T. Rudelius and I. Valenzuela, “Non-invertible global symmetries and completeness of the spectrum,” JHEP 09 (2021), 203, arXiv:2104.07036.
- Y. Choi, C. Cordova, P. S. Hsin, H. T. Lam and S. H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 (2022) no.12, 125016, arXiv:2111.01139.
- J. Kaidi, K. Ohmori and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories,” Phys. Rev. Lett. 128 (2022) no.11, 111601, arXiv:2111.01141.
- F. Apruzzi, F. Bonetti, I. García Etxebarria, S. S. Hosseini and S. Schafer-Nameki, “Symmetry TFTs from String Theory,” Commun. Math. Phys. 402 (2023) no.1, 895-949, arXiv:2112.02092.
- K. Roumpedakis, S. Seifnashri and S. H. Shao, “Higher Gauging and Non-invertible Condensation Defects,” Commun. Math. Phys. 401 (2023) no.3, 3043-3107, arXiv:2204.02407.
- L. Bhardwaj, L. E. Bottini, S. Schafer-Nameki and A. Tiwari, “Non-invertible higher-categorical symmetries,” SciPost Phys. 14 (2023) no.1, 007, arXiv:2204.06564.
- Y. Choi, C. Cordova, P. S. Hsin, H. T. Lam and S. H. Shao, “Non-invertible Condensation, Duality, and Triality Defects in 3+1 Dimensions,” Commun. Math. Phys. 402 (2023) no.1, 489-542, arXiv:2204.09025.
- J. Kaidi, G. Zafrir and Y. Zheng, “Non-invertible symmetries of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM and twisted compactification,” JHEP 08 (2022), 053, arXiv:2205.01104.
- Y. Choi, H. T. Lam and S. H. Shao, “Noninvertible Global Symmetries in the Standard Model,” Phys. Rev. Lett. 129 (2022) no.16, 161601, arXiv:2205.05086.
- V. Bashmakov, M. Del Zotto and A. Hasan, “On the 6d origin of non-invertible symmetries in 4d,” JHEP 09 (2023), 161, arXiv:2206.07073.
- L. Bhardwaj, S. Schafer-Nameki and J. Wu, “Universal Non-Invertible Symmetries,” Fortsch. Phys. 70 (2022) no.11, 2200143, arXiv:2208.05973.
- F. Apruzzi, I. Bah, F. Bonetti and S. Schafer-Nameki, “Noninvertible Symmetries from Holography and Branes,” Phys. Rev. Lett. 130 (2023) no.12, 121601, arXiv:2208.07373.
- J. J. Heckman, M. Hübner, E. Torres and H. Y. Zhang, “The Branes Behind Generalized Symmetry Operators,” Fortsch. Phys. 71 (2023) no.1, 2200180, arXiv:2209.03343.
- J. Kaidi, K. Ohmori and Y. Zheng, “Symmetry TFTs for Non-invertible Defects,” Commun. Math. Phys. 404 (2023) no.2, 1021-1124, arXiv:2209.11062.
- J. J. Heckman, M. Hubner, E. Torres, X. Yu and H. Y. Zhang, “Top down approach to topological duality defects,” Phys. Rev. D 108 (2023) no.4, 046015, arXiv:2212.09743.
- M. Henningson, “Commutation relations for surface operators in six-dimensional (2, 0) theory,” JHEP 03 (2001), 011, hep-th/0012070.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.