Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct interpolative construction of the discrete Fourier transform as a matrix product operator (2404.03182v1)

Published 4 Apr 2024 in quant-ph, cs.NA, and math.NA

Abstract: The quantum Fourier transform (QFT), which can be viewed as a reindexing of the discrete Fourier transform (DFT), has been shown to be compressible as a low-rank matrix product operator (MPO) or quantized tensor train (QTT) operator. However, the original proof of this fact does not furnish a construction of the MPO with a guaranteed error bound. Meanwhile, the existing practical construction of this MPO, based on the compression of a quantum circuit, is not as efficient as possible. We present a simple closed-form construction of the QFT MPO using the interpolative decomposition, with guaranteed near-optimal compression error for a given rank. This construction can speed up the application of the QFT and the DFT, respectively, in quantum circuit simulations and QTT applications. We also connect our interpolative construction to the approximate quantum Fourier transform (AQFT) by demonstrating that the AQFT can be viewed as an MPO constructed using a different interpolation scheme.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Jielun Chen, E.M. Stoudenmire and Steven R. White “Quantum Fourier Transform Has Small Entanglement” In PRX Quantum 4 American Physical Society, 2023, pp. 040318 DOI: 10.1103/PRXQuantum.4.040318
  2. P.W. Shor “Algorithms for quantum computation: discrete logarithms and factoring” In Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp. 124–134 DOI: 10.1109/SFCS.1994.365700
  3. M. Fannes, B. Nachtergaele and R.F. Werner “Finitely correlated states on quantum spin chains” In Communications in Mathematical Physics 144.3, 1992, pp. 443–490 DOI: 10.1007/BF02099178
  4. A. Klümper, A. Schadschneider and J. Zittartz “Groundstate properties of a generalized VBS-model” In Zeitschrift für Physik B Condensed Matter 87.3, 1992, pp. 281–287 DOI: 10.1007/BF01309281
  5. “Thermodynamic Limit of Density Matrix Renormalization” In Phys. Rev. Lett. 75 American Physical Society, 1995, pp. 3537–3540 DOI: 10.1103/PhysRevLett.75.3537
  6. Guifré Vidal “Efficient Classical Simulation of Slightly Entangled Quantum Computations” In Phys. Rev. Lett. 91 American Physical Society, 2003, pp. 147902 DOI: 10.1103/PhysRevLett.91.147902
  7. “Matrix product operator representations” In New Journal of Physics 12.2 IOP Publishing, 2010, pp. 025012 DOI: 10.1088/1367-2630/12/2/025012
  8. Ivan V Oseledets “Tensor-train decomposition” In SIAM Journal on Scientific Computing 33.5 SIAM, 2011, pp. 2295–2317
  9. Boris Khoromskij “O ( d log N )-Quantics Approximation of N - d Tensors in High-Dimensional Numerical Modeling” In Constructive Approximation - CONSTR APPROX 34, 2009 DOI: 10.1007/s00365-011-9131-1
  10. D. Coppersmith “An approximate Fourier transform useful in quantum factoring”, 2002 arXiv:quant-ph/0201067 [quant-ph]
  11. Dorit Aharonov, Zeph Landau and Johann Makowsky “The quantum FFT can be classically simulated”, 2007 arXiv:quant-ph/0611156 [quant-ph]
  12. Daniel E Browne “Efficient classical simulation of the quantum Fourier transform” In New Journal of Physics 9.5, 2007, pp. 146 DOI: 10.1088/1367-2630/9/5/146
  13. Nadav Yoran and Anthony J. Short “Efficient classical simulation of the approximate quantum Fourier transform” In Physical Review A 76.4 American Physical Society (APS), 2007 DOI: 10.1103/physreva.76.042321
  14. “Multiscale Space-Time Ansatz for Correlation Functions of Quantum Systems Based on Quantics Tensor Trains” In Phys. Rev. X 13 American Physical Society, 2023, pp. 021015 DOI: 10.1103/PhysRevX.13.021015
  15. Sergey Dolgov, Boris Khoromskij and Dmitry Savostyanov “Superfast Fourier Transform Using QTT Approximation” In Journal of Fourier Analysis and Applications 18.5, 2012, pp. 915–953
  16. Kieran J. Woolfe, Charles D. Hill and Lloyd C.L. Hollenberg “Scale invariance and efficient classical simulation of the quantum Fourier transform”, 2014 arXiv:1406.0931 [quant-ph]
  17. “Parallel cross interpolation for high-precision calculation of high-dimensional integrals” In Computer Physics Communications 246, 2020, pp. 106869 DOI: https://doi.org/10.1016/j.cpc.2019.106869
  18. Dmitry V. Savostyanov “Quasioptimality of maximum-volume cross interpolation of tensors” In Linear Algebra and its Applications 458, 2014, pp. 217–244 DOI: https://doi.org/10.1016/j.laa.2014.06.006
  19. Michael Lindsey “Multiscale interpolative construction of quantized tensor trains”, 2023 arXiv:2311.12554 [math.NA]
  20. Boris N. Khoromskij “Tensor Numerical Methods for High-dimensional PDEs: Basic Theory and Initial Applications”, 2014 arXiv:1408.4053 [math.NA]
  21. “A quantum-inspired approach to exploit turbulence structures” In Nature Computational Science 2.1 Springer ScienceBusiness Media LLC, 2022, pp. 30–37 DOI: 10.1038/s43588-021-00181-1
  22. Erika Ye and Nuno F.G. Loureiro “Quantum-inspired method for solving the Vlasov-Poisson equations” In Phys. Rev. E 106 American Physical Society, 2022, pp. 035208 DOI: 10.1103/PhysRevE.106.035208
  23. “Tensor network reduced order models for wall-bounded flows”, 2023 arXiv:2303.03010 [physics.flu-dyn]
  24. “Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces” In Journal of Statistical Mechanics: Theory and Experiment 2004.04, 2004, pp. P04005 DOI: 10.1088/1742-5468/2004/04/P04005
  25. Steven R. White and Adrian E. Feiguin “Real-Time Evolution Using the Density Matrix Renormalization Group” In Phys. Rev. Lett. 93 American Physical Society, 2004, pp. 076401 DOI: 10.1103/PhysRevLett.93.076401
  26. G. Vidal “Classical Simulation of Infinite-Size Quantum Lattice Systems in One Spatial Dimension” In Phys. Rev. Lett. 98 American Physical Society, 2007, pp. 070201 DOI: 10.1103/PhysRevLett.98.070201
  27. “Butterfly Factorization” In Multiscale Modeling & Simulation 13.2, 2015, pp. 714–732 DOI: 10.1137/15M1007173
  28. John P Boyd “A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid” In Journal of Computational Physics 103.2, 1992, pp. 243–257 DOI: https://doi.org/10.1016/0021-9991(92)90399-J
  29. Lloyd N. Trefethen “Approximation Theory and Approximation Practice, Extended Edition” Philadelphia, PA, USA: SIAM-Society for IndustrialApplied Mathematics, 2019
  30. Alan Edelman, Peter McCorquodale and Sivan Toledo “The Future Fast Fourier Transform?” In SIAM J. Sci. Comput. 20, 1997, pp. 1094–1114 URL: https://api.semanticscholar.org/CorpusID:1837696
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com