Approximate Quantum Fourier Transform with $O(n \log(n))$ T gates (1803.04933v2)
Abstract: The ability to implement the Quantum Fourier Transform (QFT) efficiently on a quantum computer facilitates the advantages offered by a variety of fundamental quantum algorithms, such as those for integer factoring, computing discrete logarithm over Abelian groups, solving systems of linear equations, and phase estimation, to name a few. The standard fault-tolerant implementation of an $n$-qubit unitary QFT approximates the desired transformation by removing small-angle controlled rotations and synthesizing the remaining ones into Clifford+T gates, incurring the T-count complexity of $O(n \log2(n))$. In this paper, we show how to obtain approximate QFT with the T-count of $O(n \log(n))$. Our approach relies on quantum circuits with measurements and feedforward, and on reusing a special quantum state that induces the phase gradient transformation. We report asymptotic analysis as well as concrete circuits, demonstrating significant advantages in both theory and practice.
- Yunseong Nam (28 papers)
- Yuan Su (43 papers)
- Dmitri Maslov (32 papers)