Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Quantum Fourier Transform with $O(n \log(n))$ T gates (1803.04933v2)

Published 13 Mar 2018 in quant-ph and cs.ET

Abstract: The ability to implement the Quantum Fourier Transform (QFT) efficiently on a quantum computer facilitates the advantages offered by a variety of fundamental quantum algorithms, such as those for integer factoring, computing discrete logarithm over Abelian groups, solving systems of linear equations, and phase estimation, to name a few. The standard fault-tolerant implementation of an $n$-qubit unitary QFT approximates the desired transformation by removing small-angle controlled rotations and synthesizing the remaining ones into Clifford+T gates, incurring the T-count complexity of $O(n \log2(n))$. In this paper, we show how to obtain approximate QFT with the T-count of $O(n \log(n))$. Our approach relies on quantum circuits with measurements and feedforward, and on reusing a special quantum state that induces the phase gradient transformation. We report asymptotic analysis as well as concrete circuits, demonstrating significant advantages in both theory and practice.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yunseong Nam (28 papers)
  2. Yuan Su (43 papers)
  3. Dmitri Maslov (32 papers)
Citations (78)

Summary

We haven't generated a summary for this paper yet.