Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Asymptotic Purification of Quantum Trajectories under Random Generalized Measurements (2404.03168v2)

Published 4 Apr 2024 in quant-ph, math-ph, and math.MP

Abstract: We develop a general framework to study quantum trajectories resulting from repeated random measurements subject to stationary noise, and generalize results of K\"ummerer and Maassen to this setting. The resulting trajectory of quantum states is a time-inhomogeneous Markov chain in a random environment. K\"ummerer and Maassen introduced the concept of dark subspaces for noise-free processes, establishing that their absence is equivalent to asymptotic purification of the system state. We clarify the notion of dark subspaces in the disordered setting by defining a measurable correspondence consisting of a collection of random subspaces satisfying a darkness condition. We further prove that asymptotic purification occurs if and only if this collection of random dark subspaces is empty. Several examples of these phenomena are provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. L. Arnold. Random Dynamical Systems. Springer Berlin, Heidelberg, 1 edition, 1998.
  2. Perturbation theory for weak measurements in quantum mechanics, systems with finite-dimensional state space. In Annales Henri Poincaré, volume 20, pages 299–335. Springer, 2019.
  3. A. Barchielli and M. Gregoratti. Quantum trajectories and measurements in continuous time: the diffusive case, volume 782. Springer, 2009.
  4. Repeated quantum non-demolition measurements: convergence and continuous time limit. In Annales Henri Poincaré, volume 14, pages 639–679. Springer, 2013.
  5. Computing the rates of measurement-induced quantum jumps. Journal of Physics A: Mathematical and Theoretical, 48(25):25FT02, 2015.
  6. On Entropy Production of Repeated Quantum Measurements II. Examples. Journal of Statistical Physics, 182(3):44, 2021.
  7. Invariant measure for quantum trajectories. Probability Theory and Related Fields, 174:307–334, 2019.
  8. On Entropy Production of Repeated Quantum Measurements I. General Theory. Communications in Mathematical Physics, 357(1):77–123, 2018.
  9. P. Billingsley. Convergence of probability measures. John Wiley & Sons, 2013.
  10. M. Born. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37(12):863–867, 1926. [On The Quantum Mechanics of Collision, in Quantum Theory and Measurement, ed. J. A. Wheeler and W. H. Zurek, Princeton University Press, 1983, pp. 52–55.].
  11. Markovian repeated interaction quantum systems. Reviews in Mathematical Physics, 34(09):2250028, 2022.
  12. Stochastic schrödinger equations. Journal of Physics A: Mathematical and General, 37(9):3189, 2004.
  13. H. Carmichael. An Open Systems Approach to Quantum Optics. Springer Berlin, Heidelberg, 1 edition, 1991.
  14. Ergodic theory, volume 245. Springer Science & Business Media, 2012.
  15. E. Davies. Quantum theory of open systems. Academic Press, 1 edition, 1976.
  16. An operational approach to quantum probability. Communications in Mathematical Physics, 17(3):239–260, 1970.
  17. R. Durrett. Probability: Theory and Examples. Cambridge University Press, 2019.
  18. N. Gisin. Quantum measurements and stochastic processes. Physical Review Letters, 52(19):1657, 1984.
  19. Progressive field-state collapse and quantum non-demolition photon counting. Nature, 448(7156):889–893, 2007.
  20. A. H. Guide. Infinite dimensional analysis. Springer, 2006.
  21. W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3):172–198, 1927. [The Physical Content of Quantum Kinematics and Mechanics. in Quantum Theory and Measurement, ed. J. A. Wheeler and W. H. Zurek, Princeton University Press, 1983, pp. 62–84.].
  22. K. E. Hellwig and K. Kraus. Pure operations and measurements. Communications in Mathematical Physics, 11(3):214–220, 1969.
  23. K. E. Hellwig and K. Kraus. Operations and measurements. II. Communications in Mathematical Physics, 16(2):142–147, 1970.
  24. A. S. Holevo. Statistical structure of quantum theory, volume 67. Springer Science & Business Media, 2003.
  25. K. Kraus. States, Effects, and Operations. Springer, 1983.
  26. G. Ludwig. Measuring and preparing processes. In A. Hartkämper and H. Neumann, editors, Foundations of Quantum Mechanics and Ordered Linear Spaces: Advanced Study Institute Marburg 1973, pages 122–162. Springer, Berlin, Heidelberg, 1974.
  27. H. Maassen and B. Kümmerer. Purification of quantum trajectories. Lecture Notes-Monograph Series, pages 252–261, 2006.
  28. Protected subspaces in quantum information. Quantum Information Processing, 9:343–367, 2010.
  29. I. Molchanov. Theory of random sets, volume 87. Springer London, 2 edition, 2017.
  30. R. Movassagh and J. Schenker. Theory of ergodic quantum processes. Physical Review X, 11(4):041001, 2021.
  31. R. Movassagh and J. Schenker. An ergodic theorem for quantum processes with applications to matrix product states. Communications in Mathematical Physics, 395(3):1175–1196, 2022.
  32. J. v. Neumann. Mathematische Grundlagen der Quantenmechanik. Springer, Berlin, 1932. [J. v. Neumman and R. Beyer, Mathematical Foundations of Quantum Mechanics: New Edition, Princeton University Press, 2018].
  33. M. A. Nielsen. Characterizing mixing and measurement in quantum mechanics. Phys. Rev. A, 63:022114, 2001.
  34. L. Pathirana and J. Schenker. Law of large numbers and central limit theorem for ergodic quantum processes. Journal of Mathematical Physics, 64(8):082201, 2023.
  35. C. Pellegrini. Existence, uniqueness and approximation of a stochastic Schrödinger equation: The diffusive case. The Annals of Probability, 36(6):2332 – 2353, 2008.
  36. R. Raquépas and J. Schenker. Large deviation for disorderd, repeated quantum measurements. In preparation.
  37. V. A. Rohlin. Exact endomorphisms of lebesgue spaces. Izv. Akad. Nauk SSSR Ser. Mat., 25:499–530, 1961.
  38. V. A. Rohlin. Exact endomorphisms of a lebesgue space. Fifteen Papers on Topology and Logic, 39:1–36, 1964.
  39. P. Walters. An introduction to ergodic theory, volume 79. Springer Science & Business Media, 2000.
  40. J. Watrous. The theory of quantum information. Cambridge university press, 2018.
  41. E. P. Wigner. The Problem of Measurement. American Journal of Physics, 31(1):6–15, 1963.
  42. Quantum measurement and control. Cambridge university press, 2009.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube