Non-variational Quantum Combinatorial Optimisation (2404.03167v2)
Abstract: This paper introduces a non-variational quantum algorithm designed to solve a wide range of combinatorial optimisation problems, including constrained and non-binary problems. The algorithm leverages an engineered interference process achieved through repeated application of two unitaries; one inducing phase-shifts dependent on objective function values, and the other mixing phase-shifted probability amplitudes via a continuous-time quantum walk (CTQW) on a problem-specific graph. The algorithm's versatility is demonstrated through its application to various problems, namely those for which solutions are characterised by either a vector of binary variables, a vector of non-binary integer variables, or permutations (a vector of integer variables without repetition). An efficient quantum circuit implementation of the CTQW for each of these problem types is also discussed. A penalty function approach for constrained problems is also introduced, including a method for optimising the penalty function. The algorithm's performance is demonstrated through numerical simulation for randomly generated instances of the following problems (and problem sizes): weighted maxcut (18 vertices), maximum independent set (18 vertices), k-means clustering (12 datapoints, 3 clusters), capacitated facility location (12 customers, 3 facility locations), and the quadratic assignment problem (9 locations). For each problem instance, the algorithm finds a globally optimal solution with a small number of iterations.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.