Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Non-variational Quantum Combinatorial Optimisation (2404.03167v2)

Published 4 Apr 2024 in quant-ph and physics.comp-ph

Abstract: This paper introduces a non-variational quantum algorithm designed to solve a wide range of combinatorial optimisation problems, including constrained and non-binary problems. The algorithm leverages an engineered interference process achieved through repeated application of two unitaries; one inducing phase-shifts dependent on objective function values, and the other mixing phase-shifted probability amplitudes via a continuous-time quantum walk (CTQW) on a problem-specific graph. The algorithm's versatility is demonstrated through its application to various problems, namely those for which solutions are characterised by either a vector of binary variables, a vector of non-binary integer variables, or permutations (a vector of integer variables without repetition). An efficient quantum circuit implementation of the CTQW for each of these problem types is also discussed. A penalty function approach for constrained problems is also introduced, including a method for optimising the penalty function. The algorithm's performance is demonstrated through numerical simulation for randomly generated instances of the following problems (and problem sizes): weighted maxcut (18 vertices), maximum independent set (18 vertices), k-means clustering (12 datapoints, 3 clusters), capacitated facility location (12 customers, 3 facility locations), and the quadratic assignment problem (9 locations). For each problem instance, the algorithm finds a globally optimal solution with a small number of iterations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.