Some properties of a modified Hilbert transform (2404.02609v1)
Abstract: Recently, Steinbach et al. introduced a novel operator $\mathcal{H}_T: L2(0,T) \to L2(0,T)$, known as the modified Hilbert transform. This operator has shown its significance in space-time formulations related to the heat and wave equations. In this paper, we establish a direct connection between the modified Hilbert transform $\mathcal{H}_T$ and the canonical Hilbert transform $\mathcal{H}$. Specifically, we prove the relationship $\mathcal{H}_T \varphi = -\mathcal{H} \tilde{\varphi}$, where $\varphi \in L2(0,T)$ and $\tilde{\varphi}$ is a suitable extension of $\varphi$ over the entire $\mathbb{R}$. By leveraging this crucial result, we derive some properties of $\mathcal{H}_T$, including a new inversion formula, that emerge as immediate consequences of well-established findings on $\mathcal{H}$.
- Fourier analysis and approximation. Volume 1: One-dimensional theory. Academic Press, New York-London, 1971.
- J. I. M. Hauser and M. Zank. Numerical study of conforming space-time methods for Maxwell’s equations. Numer. Methods Partial Differential Equations, 40(2):Paper No. e23070, 26, 2024.
- D. Hilbert. Grundzüge einer allgemeinen theorie der linearen integralgleichungen,. Nach. Akad. Wissensch. Gottingen. Math.-phys. Klasse, 3:213–259, 1904.
- E. Hille. Analytic function theory. Vol. 1. Ginn and Company, Boston, 1959.
- F. W. King. Hilbert transforms. Vol. 1, volume 124 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2009.
- J. N. Pandey. The Hilbert transform of periodic distributions. Integral Transform. Spec. Funct., 5(1-2):117–142, 1997.
- Exponential convergence of hpℎ𝑝hpitalic_h italic_p-time-stepping in space-time discretizations of parabolic PDEs. ESAIM Math. Model. Numer. Anal., 57(1):29–67, 2023.
- O. Steinbach and A. Missoni. A note on a modified Hilbert transform. Appl. Anal., 102(9):2583–2590, 2023.
- Towards coercive boundary element methods for the wave equation. J. Integral Equations Appl., 34(4):501–515, 2022.
- O. Steinbach and M. Zank. Coercive space-time finite element methods for initial boundary value problems. Electron. Trans. Numer. Anal., 52:154–194, 2020.
- O. Steinbach and M. Zank. A note on the efficient evaluation of a modified Hilbert transformation. J. Numer. Math., 29(1):47–61, 2021.