Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optical properties and dynamics of direct and spatially and momentum indirect excitons in AlGaAs/AlAs quantum wells (2404.01938v2)

Published 2 Apr 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: We present an experimental study on optical properties and dynamics of direct and spatially and momentum indirect excitons in AlGaAs/AlAs quantum wells near the crossover between $\varGamma-$ and $X$-valley confined electron states. The time-integrated photoluminescence experiment at $T=$4.8 K revealed three simultaneously observed optical transitions resulting from (a) a direct exciton recombination, involving an electron and a hole states both located in the $\varGamma$-valley in the quantum well layer, and (b) two spatially and momentum indirect excitons, comprising of the confined electron states in the $X$-valley in the AlAs barrier with different effective masses and quantum well holes in the $\varGamma$-valley. This interpretation has been based on the optical pumping density-dependent, temperature-dependent and spatially-resolved photoluminescence measurements, which provided the characterization of the structure, crucial in potential system's applications. Additionally, the time-resolved photoluminescence experiments unveiled complex carrier relaxation dynamics in the investigated quantum well system, which is strongly governed by a non-radiative carrier recombination - the characteristics further critical in potential system's use. This solid state platform hosting both direct and indirect excitons in a highly tunable monolithic system can benefit and underline the operation principles of novel electronic and photonic devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. \JournalTitleNature Physics 18, 395–400, DOI: 10.1038/s41567-022-01532-z (2022).
  2. High-temperature superfluidity with indirect excitons in van der waals heterostructures. \JournalTitleNature Communications 5, 4555, DOI: 10.1038/ncomms5555 (2014).
  3. Condensation of Indirect Excitons in Coupled AlAs/GaAs Quantum Wells. \JournalTitlePhysical Review Letters 73, 304–307, DOI: 10.1103/PhysRevLett.73.304 (1994).
  4. Towards bose–einstein condensation of excitons in potential traps. \JournalTitleNature 417, 47–52, DOI: 10.1038/417047a (2002).
  5. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. \JournalTitleNature 574, 76–80, DOI: 10.1038/s41586-019-1591-7 (2019).
  6. Excitonic devices with van der waals heterostructures: valleytronics meets twistronics. \JournalTitleNature Reviews Materials 7, 449–464, DOI: 10.1038/s41578-021-00408-7 (2022).
  7. Liu, Y. et al. Excitonic devices based on two-dimensional transition metal dichalcogenides van der waals heterostructures. \JournalTitleFrontiers of Chemical Science and Engineering 18, 16, DOI: 10.1007/s11705-023-2382-0 (2024).
  8. Optical study of alxga1-xas-alas ternary alloy multi-quantum-well structures around two γ−x𝛾𝑥\gamma{-}xitalic_γ - italic_x crossovers. \JournalTitleJournal of the Physical Society of Japan 57, 4403–4408, DOI: 10.1143/jpsj.57.4403 (1988).
  9. Photoluminescence decay time studies of type II GaAs/AlAs quantum-well structures. \JournalTitleJournal of Applied Physics 65, 3606–3609, DOI: 10.1063/1.342640 (1989).
  10. Determination of xzsubscript𝑥𝑧{\mathit{x}}_{\mathit{z}}italic_x start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT-xx,subscript𝑥𝑥{\mathit{x}}_{\mathit{x},}italic_x start_POSTSUBSCRIPT italic_x , end_POSTSUBSCRIPTy energy separation and intervalley relaxation times in type-ii alxsubscriptal𝑥{\mathrm{al}}_{\mathit{x}}roman_al start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPTga1−xsubscriptga1𝑥{\mathrm{ga}}_{1\mathrm{-}\mathit{x}}roman_ga start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPTas/alas multiple quantum wells. \JournalTitlePhys. Rev. B 42, 11434–11437, DOI: 10.1103/PhysRevB.42.11434 (1990).
  11. Lee, S. T. et al. Interband transitions in alxsubscriptal𝑥{\mathrm{al}}_{\mathit{x}}roman_al start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPTga1−xsubscriptga1𝑥{\mathrm{ga}}_{1\mathrm{-}\mathit{x}}roman_ga start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPTas/alas quantum-well structures. \JournalTitlePhys. Rev. B 53, 12912–12916, DOI: 10.1103/PhysRevB.53.12912 (1996).
  12. Haetty, J. et al. Magnetic-field-induced localization of carriers in al0.25⁢ga0.75⁢As/AlAssubscriptal0.25subscriptga0.75AsAlAs{\mathrm{al}}_{0.25}{\mathrm{ga}}_{0.75}\mathrm{A}\mathrm{s}/\mathrm{A}\mathrm% {l}\mathrm{A}\mathrm{s}roman_al start_POSTSUBSCRIPT 0.25 end_POSTSUBSCRIPT roman_ga start_POSTSUBSCRIPT 0.75 end_POSTSUBSCRIPT roman_As / roman_AlAs multiple-quantum-well structures. \JournalTitlePhys. Rev. B 56, 12364–12368, DOI: 10.1103/PhysRevB.56.12364 (1997).
  13. ΓΓ\Gammaroman_Γ-X mixing in GaAs/Alx𝑥{}_{x}start_FLOATSUBSCRIPT italic_x end_FLOATSUBSCRIPTGa1−x1𝑥{}_{1-x}start_FLOATSUBSCRIPT 1 - italic_x end_FLOATSUBSCRIPTAs and Alx𝑥{}_{x}start_FLOATSUBSCRIPT italic_x end_FLOATSUBSCRIPTGa1−x1𝑥{}_{1-x}start_FLOATSUBSCRIPT 1 - italic_x end_FLOATSUBSCRIPT As/AlAs superlattices. \JournalTitlePhysical Review B 36, 4359–4374, DOI: 10.1103/PhysRevB.36.4359 (1987).
  14. Ru, G. et al. Gamma-X band mixing in GaAs/AlAs superlattice. vol. 5260, 257, DOI: 10.1117/12.544034 (2003).
  15. Spectroscopic determination of the bandgap crossover composition in mbe-grown alxga1-xas. \JournalTitleJapanese Journal of Applied Physics 54, 042402, DOI: 10.7567/JJAP.54.042402 (2015).
  16. Chand, N. et al. Comprehensive analysis of si-doped alx⁢ga1−x⁢Assubscriptal𝑥subscriptga1𝑥As{\mathrm{al}}_{x}{\mathrm{ga}}_{1-x}\mathrm{As}roman_al start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT roman_ga start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPT roman_As (x=0𝑥0x=0italic_x = 0 to 1111): Theory and experiments. \JournalTitlePhys. Rev. B 30, 4481–4492, DOI: 10.1103/PhysRevB.30.4481 (1984).
  17. Pearah, P. J. et al. Low-temperature optical absorption in AlxGa1-xAs grown by molecular-beam epitaxy. \JournalTitlePhys. Rev. B 32, 3857–3862, DOI: 10.1103/PhysRevB.32.3857 (1985).
  18. Tada, T. et al. Tunneling process in AlAs/GaAs double quantum wells studied by photoluminescence. \JournalTitleJournal of Applied Physics 63, 5491–5494, DOI: 10.1063/1.340374 (1988).
  19. Feldmann, J. et al. ΓΓ\Gammaroman_Γ-X-ΓΓ\Gammaroman_Γ electron transfer in mixed type I-type II GaAs/AlAs quantum well structures. \JournalTitleSolid State Communications 83, 245–248, DOI: 10.1016/0038-1098(92)90846-2 (1992).
  20. Order of the X conduction-band valleys in type-II GaAs/AlAs quantum wells. \JournalTitlePhysical Review B 39, 13426–13433, DOI: 10.1103/PhysRevB.39.13426 (1989).
  21. Birkedal, D. et al. Interwell excitons in GaAs superlattices. \JournalTitleSuperlattices and Microstructures 21, 587–590, DOI: 10.1006/spmi.1996.0208 (1997).
  22. Type-I – type-II transition in ultra-short-period GaAs/AlAs superlattices. \JournalTitlePhysical Review B 40, 6101–6107, DOI: 10.1103/PhysRevB.40.6101 (1989).
  23. ΓΓ\Gammaroman_Γ - X crossover in GaAs/AlAs superlattices. \JournalTitleSolid State Communications 70, 535–539, DOI: 10.1016/0038-1098(89)90945-9 (1989).
  24. Peterson, M. W. et al. Miniband dispersion in GaAs/Alx𝑥{}_{x}start_FLOATSUBSCRIPT italic_x end_FLOATSUBSCRIPTGa1−x1𝑥{}_{1-x}start_FLOATSUBSCRIPT 1 - italic_x end_FLOATSUBSCRIPTAs superlattices with wide wells and very thin barriers. \JournalTitleApplied Physics Letters 53, 2666–2668, DOI: 10.1063/1.100189 (1988).
  25. Danan, G. et al. Optical evidence of the direct-to-indirect-gap transition in GaAs-AlAs short-period superlattices. \JournalTitlePhysical Review B 35, 6207–6212, DOI: 10.1103/PhysRevB.35.6207 (1987).
  26. Suchomel, H. et al. Room temperature strong coupling in a semiconductor microcavity with embedded AlGaAs quantum wells designed for polariton lasing. \JournalTitleOptics Express 25, 24816, DOI: 10.1364/OE.25.024816 (2017).
  27. Exciton and trion spectral line shape in the presence of an electron gas in GaAs/AlAs quantum wells. \JournalTitlePhysical Review B - Condensed Matter and Materials Physics 54, DOI: 10.1103/PhysRevB.54.10609 (1996).
  28. Syperek, M. et al. Spin coherence of holes in GaAs/(Al,Ga)As quantum wells. \JournalTitlePhysical Review Letters 99, DOI: 10.1103/PhysRevLett.99.187401 (2007).
  29. Spatial variations of photoluminescence line broadening around oval defects in gaas/algaas multiple quantum wells. \JournalTitleSemiconductor Science and Technology 7, A59, DOI: 10.1088/0268-1242/7/1A/011 (1992).
  30. Ihm, J. Effects of the layer thickness on the electronic character in GaAs-AlAs superlattices. \JournalTitleApplied Physics Letters 50, 1068–1070, DOI: 10.1063/1.97972 (1987).
  31. Fabrication and optical properties of semiconductor quantum wells and superlattices. \JournalTitleProgress in Quantum Electronics 14, 289–356, DOI: 10.1016/0079-6727(90)90001-E (1990).
  32. Effective mass and ground state of AlAs quantum wells studied by magnetoresistance measurements. \JournalTitleJournal of Applied Physics 71, 296–299, DOI: 10.1063/1.350704 (1992).
  33. Rotation of the conduction band valleys in alas due to XXsubscript𝑋𝑋{X}_{X}italic_X start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT- XYsubscript𝑋𝑌{X}_{Y}italic_X start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT mixing. \JournalTitlePhys. Rev. Lett. 83, 3693–3696, DOI: 10.1103/PhysRevLett.83.3693 (1999).
  34. Piprek, J. Semiconductor optoelectronic devices (Elsevier, 2003).
  35. Pietka, B. Excitonic Complexes in Natural Quantum Dots Formed in Type II GaAs / AlAs. Physics [physics]. Ph.D. thesis, Université Joseph-Fourier - Grenoble I, Grenoble (2007).
  36. Theory of two-dimensional spatially indirect equilibrium exciton condensates. \JournalTitlePhys. Rev. B 92, 165121, DOI: 10.1103/PhysRevB.92.165121 (2015).
  37. k-space formulation of ΓΓ\Gammaroman_Γ-x mixing for excitons in a thin gaas/alas quantum well. \JournalTitlePhys. Rev. B 49, 5438–5442, DOI: 10.1103/PhysRevB.49.5438 (1994).
  38. Self-consistent approach for calculations of exciton binding energy in quantum wells. \JournalTitlePhysica E: Low-dimensional Systems and Nanostructures 25, 539–553, DOI: https://doi.org/10.1016/j.physe.2004.08.111 (2005).
  39. Finkman, E. et al. Optical properties and band structure of short-period GaAs/AlAs superlattices. \JournalTitleJournal of Luminescence 39, 57–74, DOI: 10.1016/0022-2313(87)90033-0 (1987).
  40. Coulomb effects in spatially separated electron and hole layers in coupled quantum wells. \JournalTitleJournal of Experimental and Theoretical Physics 92, 260–266, DOI: 10.1134/1.1354683 (2001).
  41. Magneto-optics of the spatially separated electron and hole layers in gaas/alx⁢ga1−x⁢Asgaassubscriptal𝑥subscriptga1𝑥As{\mathrm{g}\mathrm{a}\mathrm{a}\mathrm{s}/\mathrm{a}\mathrm{l}}_{x}{\mathrm{ga% }}_{1-x}\mathrm{As}roman_gaas / roman_al start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT roman_ga start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPT roman_As coupled quantum wells. \JournalTitlePhys. Rev. B 60, 8753–8758, DOI: 10.1103/PhysRevB.60.8753 (1999).
  42. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. \JournalTitlePhys. Rev. B 45, 8989–8994, DOI: 10.1103/PhysRevB.45.8989 (1992).
  43. Excitation-intensity dependence of shallow and deep-level photoluminescence transitions in semiconductors. \JournalTitleJournal of Applied Physics 126, 175703, DOI: 10.1063/1.5095235 (2019).
  44. Screening of the electron-hole interaction in quantum well structures. \JournalTitleSuperlattices and Microstructures 1, 149–151, DOI: https://doi.org/10.1016/0749-6036(85)90111-9 (1985).
  45. Band parameters for III–V compound semiconductors and their alloys. \JournalTitleJournal of Applied Physics 89, 5815–5875, DOI: 10.1063/1.1368156 (2001).
  46. Varshni, Y. Temperature dependence of the energy gap in semiconductors. \JournalTitlePhysica 34, 149–154, DOI: https://doi.org/10.1016/0031-8914(67)90062-6 (1967).
  47. Lourenço, S. A. et al. Temperature dependence of optical transitions in AlGaAs. \JournalTitleJournal of Applied Physics 89, 6159–6164, DOI: 10.1063/1.1367875 (2001).
  48. Colocci, M. et al. Temperature dependence of exciton lifetimes in gaas/algaas quantum well structures. \JournalTitleEurophysics Letters 12, 417, DOI: 10.1209/0295-5075/12/5/007 (1990).
  49. Ivanov, A. L. Quantum diffusion of dipole-oriented indirect excitons in coupled quantum wells. \JournalTitleEurophysics Letters 59, 586, DOI: 10.1209/epl/i2002-00144-3 (2002).
  50. Spectroscopy of Semiconductor Microstructures, vol. 206 of NATO ASI Series (Springer US, Boston, MA, 1989).
  51. Direct measurement of exciton diffusion in quantum wells. \JournalTitleSolid-State Electronics 40, 725–728, DOI: https://doi.org/10.1016/0038-1101(95)00351-7 (1996). Proceedings of the Seventh International Conference on Modulated Semiconductor Structures.
  52. Smith, L. M. et al. Phonon-wind-driven transport of photoexcited carriers in a semiconductor quantum well. \JournalTitlePhys. Rev. B 39, 1862–1870, DOI: 10.1103/PhysRevB.39.1862 (1989).
  53. Energy relaxation and transport of indirect excitons in alas/gaas coupled quantum wells in magnetic field. \JournalTitleJournal of Experimental and Theoretical Physics 87, 608–611, DOI: 10.1134/1.558700 (1998).
  54. Luminescence dynamics in type-ii gaas/alas superlattices near the type-i to type-ii crossover. \JournalTitlePhys. Rev. B 54, 14589–14594, DOI: 10.1103/PhysRevB.54.14589 (1996).
  55. Baranowski, M. et al. Carrier dynamics between delocalized and localized states in type-II GaAsSb/GaAs quantum wells. \JournalTitleApplied Physics Letters 98, 061910, DOI: 10.1063/1.3548544 (2011).
  56. Mazuz-Harpaz, Y. et al. Radiative lifetimes of dipolar excitons in double quantum wells. \JournalTitlePhys. Rev. B 95, 155302, DOI: 10.1103/PhysRevB.95.155302 (2017).
  57. Pieczarka, M. et al. Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system. \JournalTitleApplied Physics Letters 110, 221104, DOI: 10.1063/1.4984747 (2017).
  58. Rudno-Rudziński, W. et al. Carrier diffusion as a measure of carrier/exciton transfer rate in InAs/InGaAsP/InP hybrid quantum dot–quantum well structures emitting at telecom spectral range. \JournalTitleApplied Physics Letters 112, 051103, DOI: 10.1063/1.5016436 (2018).
  59. Luttinger, J. M. Quantum theory of cyclotron resonance in semiconductors: General theory. \JournalTitlePhys. Rev. 102, 1030–1041, DOI: 10.1103/PhysRev.102.1030 (1956).
  60. Kubisa, M. et al. Photoluminescence investigations of two-dimensional hole landau levels in p-type single alx⁢ga1−x⁢As/GaAssubscriptal𝑥subscriptga1𝑥AsGaAs{\mathrm{al}}_{x}{\mathrm{ga}}_{1-x}\mathrm{A}\mathrm{s}/\mathrm{G}\mathrm{a}% \mathrm{A}\mathrm{s}roman_al start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT roman_ga start_POSTSUBSCRIPT 1 - italic_x end_POSTSUBSCRIPT roman_As / roman_GaAs heterostructures. \JournalTitlePhys. Rev. B 67, 035305, DOI: 10.1103/PhysRevB.67.035305 (2003).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com