Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perfecting Periodic Trajectory Tracking: Model Predictive Control with a Periodic Observer ($Π$-MPC) (2404.01550v2)

Published 2 Apr 2024 in cs.RO, cs.SY, eess.SY, and math.OC

Abstract: In Model Predictive Control (MPC), discrepancies between the actual system and the predictive model can lead to substantial tracking errors and significantly degrade performance and reliability. While such discrepancies can be alleviated with more complex models, this often complicates controller design and implementation. By leveraging the fact that many trajectories of interest are periodic, we show that perfect tracking is possible when incorporating a simple observer that estimates and compensates for periodic disturbances. We present the design of the observer and the accompanying tracking MPC scheme, proving that their combination achieves zero tracking error asymptotically, regardless of the complexity of the unmodelled dynamics. We validate the effectiveness of our method, demonstrating asymptotically perfect tracking on a high-dimensional soft robot with nearly 10,000 states and a fivefold reduction in tracking errors compared to a baseline MPC on small-scale autonomous race car experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Nob Hill Publishing, 2017.
  2. G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing control using learned dynamics,” in Proc. International Conference on Robotics and Automation (ICRA), pp. 9784–9790, 2019.
  3. J. Kabzan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-based model predictive control for autonomous racing,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.
  4. G. Torrente, E. Kaufmann, P. Föhn, and D. Scaramuzza, “Data-driven MPC for quadrotors,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3769–3776, 2021.
  5. P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer, “The dynamics of legged locomotion: Models, analyses, and challenges,” SIAM Review, vol. 48, no. 2, pp. 207–304, 2006.
  6. C. Cosner, G. Anwar, and M. Tomizuka, “Plug in repetitive control for industrial robotic manipulators,” in Proc. IEEE International Conference on Robotics and Automation, pp. 1970–1975 vol.3, 1990.
  7. A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive contouring control for time-optimal quadrotor flight,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022.
  8. T. Badgwell and K. Muske, “Disturbance model design for linear model predictive control,” in Proc. American Control Conference, vol. 2, pp. 1621–1626 vol.2, May 2002.
  9. G. Pannocchia and J. B. Rawlings, “Disturbance models for offset-free model-predictive control,” AIChE Journal, vol. 49, no. 2, pp. 426–437, 2003.
  10. U. Maeder, F. Borrelli, and M. Morari, “Linear offset-free Model Predictive Control,” Automatica, vol. 45, pp. 2214–2222, Oct. 2009.
  11. G. Pannocchia, M. Gabiccini, and A. Artoni, “Offset-free MPC explained: Novelties, subtleties, and applications,” IFAC-PapersOnLine, vol. 48, pp. 342–351, Jan. 2015.
  12. H.-S. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 6, pp. 1099–1121, 2007.
  13. L. Cuiyan, Z. Dongchun, and Z. Xianyi, “A survey of repetitive control,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2, pp. 1160–1166 vol.2, 2004.
  14. Y. Wang, F. Gao, and F. J. Doyle, “Survey on iterative learning control, repetitive control, and run-to-run control,” Journal of Process Control, vol. 19, no. 10, pp. 1589–1600, 2009.
  15. B. A. Francis and W. M. Wonham, “The internal model principle for linear multivariable regulators,” Applied Mathematics and Optimization, vol. 2, pp. 170–194, June 1975.
  16. J. H. Lee, S. Natarajan, and K. S. Lee, “A model-based predictive control approach to repetitive control of continuous processes with periodic operations,” Journal of Process Control, vol. 11, no. 2, pp. 195–207, 2001.
  17. R. Cao and K.-S. Low, “A Repetitive Model Predictive Control Approach for Precision Tracking of a Linear Motion System,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 1955–1962, June 2009.
  18. M. Li, T. Yan, C. Mao, L. Wen, X. Zhang, and T. Huang, “Performance-enhanced iterative learning control using a model-free disturbance observer,” IET Control Theory & Applications, vol. 15, no. 7, pp. 978–988, 2021.
  19. A. Carron, E. Arcari, M. Wermelinger, L. Hewing, M. Hutter, and M. N. Zeilinger, “Data-driven model predictive control for trajectory tracking with a robotic arm,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3758–3765, 2019.
  20. J. Chen, Y. Dang, and J. Han, “Offset-free model predictive control of a soft manipulator using the Koopman operator,” Mechatronics, vol. 86, p. 102871, 2022.
  21. U. Maeder and M. Morari, “Offset-free reference tracking with model predictive control,” Automatica, vol. 46, pp. 1469–1476, Sept. 2010.
  22. V. Mirasierra and D. Limon, “Modifier-adaptation for real-time optimal periodic operation,” arXiv preprint arXiv:2309.09680, 2023.
  23. S. W. Haddleton, “Steady state performance of discrete linear time-invariant systems,” Master’s thesis, Rochester Institute of Technology, 1994.
  24. E. Davison, “The robust control of a servomechanism problem for linear time-invariant multivariable systems,” IEEE Transactions on Automatic Control, vol. 21, no. 1, pp. 25–34, 1976.
  25. M. Morari and U. Maeder, “Nonlinear offset-free model predictive control,” Automatica, vol. 48, pp. 2059–2067, Sept. 2012.
  26. J. Köhler, M. A. Müller, and F. Allgöwer, “Constrained nonlinear output regulation using model predictive control – extended version,” IEEE Transactions on Automatic Control, vol. 67, pp. 2419–2434, May 2022.
  27. J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer, C. Duriez, H. Delingette, and L. Grisoni, “SOFA-an open source framework for medical simulation,” in MMVR 15-Medicine Meets Virtual Reality, vol. 125, pp. 13–18, IOP Press, 2007.
  28. E. Coevoet, T. Morales-Bieze, F. Largilliere, Z. Zhang, M. Thieffry, M. Sanz-Lopez, B. Carrez, D. Marchal, O. Goury, J. Dequidt, et al., “Software toolkit for modeling, simulation, and control of soft robots,” Advanced Robotics, vol. 31, no. 22, pp. 1208–1224, 2017.
  29. J. I. Alora, M. Cenedese, E. Schmerling, G. Haller, and M. Pavone, “Data-driven spectral submanifold reduction for nonlinear optimal control of high-dimensional robots,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 2627–2633, IEEE, 2023.
  30. A. Carron, S. Bodmer, L. Vogel, R. Zurbrügg, D. Helm, R. Rickenbach, S. Muntwiler, J. Sieber, and M. N. Zeilinger, “Chronos and CRS: Design of a miniature car-like robot and a software framework for single and multi-agent robotics and control,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 1371–1378, IEEE, 2023.
  31. Springer Science & Business Media, 2011.
  32. R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren, A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “acados—a modular open-source framework for fast embedded optimal control,” Mathematical Programming Computation, vol. 14, no. 1, pp. 147–183, 2022.
  33. E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems. Texts in Applied Mathematics, New York: Springer, second ed., 1998.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com