Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Tensionless Strings in a Kalb-Ramond Background (2404.01385v1)

Published 1 Apr 2024 in hep-th

Abstract: We investigate tensionless (or null) bosonic string theory with a Kalb-Ramond background turned on. In analogy with the tensile case, we find that the Kalb-Ramond field has a non-trivial effect on the spectrum only when the theory is compactified on an (\left(S1\right){\otimes d}) background with (d\geq 2). We discuss the effect of this background field on the tensionless spectrum constructed on three known consistent null string vacua. We elucidate further on the intriguing fate of duality symmetries in these classes of string theories when the background field is turned on.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. A. Schild, “Classical Null Strings,” Phys. Rev. D, vol. 16, p. 1722, 1977.
  2. D. J. Gross and P. F. Mende, “The High-Energy Behavior of String Scattering Amplitudes,” Phys. Lett. B, vol. 197, pp. 129–134, 1987.
  3. D. J. Gross and P. F. Mende, “String Theory Beyond the Planck Scale,” Nucl. Phys. B, vol. 303, pp. 407–454, 1988.
  4. D. J. Gross, “High-Energy Symmetries of String Theory,” Phys. Rev. Lett., vol. 60, p. 1229, 1988.
  5. M. A. Vasiliev, “Higher spin gauge theories in various dimensions,” PoS, vol. JHW2003, p. 003, 2003.
  6. A. Sagnotti and M. Tsulaia, “On higher spins and the tensionless limit of string theory,” Nucl. Phys. B, vol. 682, pp. 83–116, 2004.
  7. G. Bonelli, “On the tensionless limit of bosonic strings, infinite symmetries and higher spins,” Nucl. Phys. B, vol. 669, pp. 159–172, 2003.
  8. E. Sezgin and P. Sundell, “Massless higher spins and holography,” Nucl. Phys. B, vol. 644, pp. 303–370, 2002. [Erratum: Nucl.Phys.B 660, 403–403 (2003)].
  9. M. R. Gaberdiel and R. Gopakumar, “Higher Spins & Strings,” JHEP, vol. 11, p. 044, 2014.
  10. A. Bagchi, A. Banerjee, S. Chakrabortty, and R. Chatterjee, “A Rindler road to Carrollian worldsheets,” JHEP, vol. 04, p. 082, 2022.
  11. A. Bagchi, A. Banerjee, and S. Chakrabortty, “Rindler Physics on the String Worldsheet,” Phys. Rev. Lett., vol. 126, no. 3, p. 031601, 2021.
  12. R. D. Pisarski and O. Alvarez, “Strings at finite temperature and deconfinement,” Phys. Rev. D, vol. 26, pp. 3735–3737, Dec 1982.
  13. P. Olesen, “Strings, Tachyons and Deconfinement,” Phys. Lett. B, vol. 160, pp. 408–410, 1985.
  14. J. J. Atick and E. Witten, “The Hagedorn Transition and the Number of Degrees of Freedom of String Theory,” Nucl. Phys. B, vol. 310, pp. 291–334, 1988.
  15. A. Bagchi, A. Banerjee, and P. Parekh, “Tensionless Path from Closed to Open Strings,” Phys. Rev. Lett., vol. 123, no. 11, p. 111601, 2019.
  16. A. Bagchi, D. Grumiller, and M. M. Sheikh-Jabbari, “Horizon Strings as 3d Black Hole Microstates,” 10 2022.
  17. A. Karlhede and U. Lindstrom, “The Classical Bosonic String in the Zero Tension Limit,” Class. Quant. Grav., vol. 3, pp. L73–L75, 1986.
  18. F. Lizzi, B. Rai, G. Sparano, and A. Srivastava, “Quantization of the Null String and Absence of Critical Dimensions,” Phys. Lett. B, vol. 182, pp. 326–330, 1986.
  19. J. Gamboa, C. Ramirez, and M. Ruiz-Altaba, “NULL SPINNING STRINGS,” Nucl. Phys. B, vol. 338, pp. 143–187, 1990.
  20. J. Gamboa, C. Ramirez, and M. Ruiz-Altaba, “QUANTUM NULL (SUPER)STRINGS,” Phys. Lett. B, vol. 225, pp. 335–339, 1989.
  21. H. Gustafsson, U. Lindstrom, P. Saltsidis, B. Sundborg, and R. van Unge, “Hamiltonian BRST quantization of the conformal string,” Nucl. Phys. B, vol. 440, pp. 495–520, 1995.
  22. U. Lindstrom and M. Zabzine, “Tensionless strings, WZW models at critical level and massless higher spin fields,” Phys. Lett. B, vol. 584, pp. 178–185, 2004.
  23. J. Isberg, U. Lindstrom, B. Sundborg, and G. Theodoridis, “Classical and quantized tensionless strings,” Nucl. Phys. B, vol. 411, pp. 122–156, 1994.
  24. A. Bagchi, “Tensionless Strings and Galilean Conformal Algebra,” JHEP, vol. 05, p. 141, 2013.
  25. A. Bagchi, S. Chakrabortty, and P. Parekh, “Tensionless Strings from Worldsheet Symmetries,” JHEP, vol. 01, p. 158, 2016.
  26. H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, “Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A, vol. 269, pp. 21–52, 1962.
  27. R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times,” Proc. Roy. Soc. Lond. A, vol. 270, pp. 103–126, 1962.
  28. A. Ashtekar, J. Bicak, and B. G. Schmidt, “Asymptotic structure of symmetry reduced general relativity,” Phys. Rev. D, vol. 55, pp. 669–686, 1997.
  29. J.-M. Lévy-Leblond, “Une nouvelle limite non-relativiste du groupe de poincaré,” Annales de l’I.H.P. Physique théorique, vol. 3, no. 1, pp. 1–12, 1965.
  30. N. Sen Gupta, “On an Analogue of the Galileo Group,” Nuovo Cim. 54 (1966) 512 • DOI: 10.1007/BF02740871.
  31. M. Henneaux, “Geometry of Zero Signature Space-times,” Bull. Soc. Math. Belg., vol. 31, pp. 47–63, 1979.
  32. A. Bagchi, “Correspondence between Asymptotically Flat Spacetimes and Nonrelativistic Conformal Field Theories,” Phys. Rev. Lett., vol. 105, p. 171601, 2010.
  33. A. Bagchi, S. Detournay, R. Fareghbal, and J. Simón, “Holography of 3D Flat Cosmological Horizons,” Phys. Rev. Lett., vol. 110, no. 14, p. 141302, 2013.
  34. A. Bagchi and R. Fareghbal, “BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries,” JHEP, vol. 10, p. 092, 2012.
  35. A. Bagchi, S. Detournay, and D. Grumiller, “Flat-Space Chiral Gravity,” Phys. Rev. Lett., vol. 109, p. 151301, 2012.
  36. A. Bagchi, R. Basu, D. Grumiller, and M. Riegler, “Entanglement entropy in Galilean conformal field theories and flat holography,” Phys. Rev. Lett., vol. 114, no. 11, p. 111602, 2015.
  37. A. Bagchi, R. Basu, A. Kakkar, and A. Mehra, “Flat Holography: Aspects of the dual field theory,” JHEP, vol. 12, p. 147, 2016.
  38. M. Asadi, O. Baghchesaraei, and R. Fareghbal, “Stress tensor correlators of CCFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT using flat-space holography,” Eur. Phys. J. C, vol. 77, no. 11, p. 737, 2017.
  39. H. Jiang, W. Song, and Q. Wen, “Entanglement Entropy in Flat Holography,” JHEP, vol. 07, p. 142, 2017.
  40. L. Donnay and C. Marteau, “Carrollian Physics at the Black Hole Horizon,” Class. Quant. Grav., vol. 36, no. 16, p. 165002, 2019.
  41. A. Bagchi, K. S. Kolekar, and A. Shukla, “Carrollian Origins of Bjorken Flow,” 2 2023.
  42. A. Bagchi, K. S. Kolekar, T. Mandal, and A. Shukla, “Heavy-ion collisions, Gubser flow, and Carroll hydrodynamics,” Phys. Rev. D, vol. 109, no. 5, p. 056004, 2024.
  43. J. Armas and E. Have, “Carrollian fluids and spontaneous breaking of boost symmetry,” 8 2023.
  44. L. Bidussi, J. Hartong, E. Have, J. Musaeus, and S. Prohazka, “Fractons, dipole symmetries and curved spacetime,” SciPost Phys., vol. 12, no. 6, p. 205, 2022.
  45. J. Figueroa-O’Farrill, A. Pérez, and S. Prohazka, “Carroll/fracton particles and their correspondence,” JHEP, vol. 06, p. 207, 2023.
  46. A. Bagchi, A. Banerjee, R. Basu, M. Islam, and S. Mondal, “Magic fermions: Carroll and flat bands,” JHEP, vol. 03, p. 227, 2023.
  47. L. Marsot, P. M. Zhang, M. Chernodub, and P. A. Horvathy, “Hall effects in Carroll dynamics,” 12 2022.
  48. C. Duval, G. W. Gibbons, and P. A. Horvathy, “Conformal Carroll groups,” J. Phys. A, vol. 47, no. 33, p. 335204, 2014.
  49. A. Bagchi, S. Chakrabortty, and P. Parekh, “Tensionless Superstrings: View from the Worldsheet,” JHEP, vol. 10, p. 113, 2016.
  50. A. Bagchi, A. Banerjee, S. Chakrabortty, and P. Parekh, “Inhomogeneous Tensionless Superstrings,” JHEP, vol. 02, p. 065, 2018.
  51. A. Bagchi, A. Banerjee, S. Chakrabortty, and P. Parekh, “Exotic Origins of Tensionless Superstrings,” Phys. Lett. B, vol. 801, p. 135139, 2020.
  52. A. Bagchi, A. Banerjee, S. Chakrabortty, S. Dutta, and P. Parekh, “A tale of three — tensionless strings and vacuum structure,” JHEP, vol. 04, p. 061, 2020.
  53. A. Bagchi, M. Mandlik, and P. Sharma, “Tensionless tales: vacua and critical dimensions,” JHEP, vol. 08, p. 054, 2021.
  54. E. Casali and P. Tourkine, “On the null origin of the ambitwistor string,” JHEP, vol. 11, p. 036, 2016.
  55. K. Lee, S.-J. Rey, and J. A. Rosabal, “A string theory which isn’t about strings,” JHEP, vol. 11, p. 172, 2017.
  56. B. Chen, Z. Hu, Z.-f. Yu, and Y.-f. Zheng, “Path-integral quantization of tensionless (super) string,” 2 2023.
  57. J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on Mathematical Physics, Cambridge University Press, 12 2007.
  58. Theoretical and Mathematical Physics, Heidelberg, Germany: Springer, 2013.
  59. A. Banerjee, R. Chatterjee, and P. Pandit, “Tensionless Tales of Compactification,” 7 2023.
  60. Cambridge University Press, 12 2006.
  61. S. Gangopadhyay, A. G. Hazra, and A. Saha, “Noncommutativity in interpolating string: A Study of gauge symmetries in noncommutative framework,” Phys. Rev. D, vol. 74, p. 125023, 2006.
  62. J. Gomis and Z. Yan, “Worldsheet Formalism for Decoupling Limits in String Theory,” 11 2023.
  63. A. Bagchi, A. Banerjee, S. Mondal, D. Mukherjee, and H. Muraki, “Beyond Wilson? Carroll from current deformations,” 1 2024.
  64. J. Hartong, “Gauging the Carroll Algebra and Ultra-Relativistic Gravity,” JHEP, vol. 08, p. 069, 2015.
  65. E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel, and T. ter Veldhuis, “Carroll versus Galilei Gravity,” JHEP, vol. 03, p. 165, 2017.
  66. A. Bagchi, A. Banerjee, S. Dutta, K. S. Kolekar, and P. Sharma, “Carroll covariant scalar fields in two dimensions,” JHEP, vol. 01, p. 072, 2023.
  67. G. Aldazabal, D. Marques, and C. Nunez, “Double Field Theory: A Pedagogical Review,” Class. Quant. Grav., vol. 30, p. 163001, 2013.
  68. K. Morand and J.-H. Park, “Classification of non-Riemannian doubled-yet-gauged spacetime,” Eur. Phys. J. C, vol. 77, no. 10, p. 685, 2017. [Erratum: Eur.Phys.J.C 78, 901 (2018)].
  69. A. Giveon, M. Porrati, and E. Rabinovici, “Target space duality in string theory,” Phys. Rept., vol. 244, pp. 77–202, 1994.
  70. J. Gomis and H. Ooguri, “Nonrelativistic closed string theory,” J. Math. Phys., vol. 42, pp. 3127–3151, 2001.
  71. C. D. A. Blair, J. Lahnsteiner, N. A. J. Obers, and Z. Yan, “Unification of Decoupling Limits in String and M-theory,” 11 2023.
  72. E. Casali and P. Tourkine, “Windings of twisted strings,” Phys. Rev. D, vol. 97, no. 6, p. 061902, 2018.
  73. K. Lee and J. A. Rosabal, “A Note on Circle Compactification of Tensile Ambitwistor String,” Nucl. Phys. B, vol. 933, pp. 482–510, 2018.
  74. N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP, vol. 09, p. 032, 1999.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com