Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel deep learning methods for 3D flow field segmentation and classification (2305.11884v2)

Published 10 May 2023 in cs.CV and physics.flu-dyn

Abstract: Flow field segmentation and classification help researchers to understand vortex structure and thus turbulent flow. Existing deep learning methods mainly based on global information and focused on 2D circumstance. Based on flow field theory, we propose novel flow field segmentation and classification deep learning methods in three-dimensional space. We construct segmentation criterion based on local velocity information and classification criterion based on the relationship between local vorticity and vortex wake, to identify vortex structure in 3D flow field, and further classify the type of vortex wakes accurately and rapidly. Simulation experiment results showed that, compared with existing methods, our segmentation method can identify the vortex area more accurately, while the time consumption is reduced more than 50%; our classification method can reduce the time consumption by more than 90% while maintaining the same classification accuracy level.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. \bibinfotitlePod analysis of the unsteady behavior of blade wake under the influence of laminar separation vortex shedding in a compressor cascade. \bibinfojournalAerospace Science and Technology \bibinfovolume105, \bibinfopages106056.
  2. \bibinfotitleOnset of vortex clustering and inverse energy cascade in dissipative quantum fluids. \bibinfojournalNature Photonics , \bibinfopages1–6.
  3. \bibinfotitleIs vortex stretching the main cause of the turbulent energy cascade? \bibinfojournalJournal of Fluid Mechanics \bibinfovolume883, \bibinfopagesR2.
  4. \bibinfotitleVortex dynamics of turbulence–coherent structure interaction. \bibinfojournalTheoretical and Computational Fluid Dynamics \bibinfovolume24, \bibinfopages265–282.
  5. \bibinfotitleLarge eddy simulation of ventilated cavitation with an insight on the correlation mechanism between ventilation and vortex evolutions. \bibinfojournalApplied Mathematical Modelling \bibinfovolume89, \bibinfopages1055–1073.
  6. \bibinfotitleVortex identification-applications in aerodynamics: A case study, in: \bibinfobooktitleProceedings. Visualization’97 (Cat. No. 97CB36155), \bibinfoorganizationIEEE. pp. \bibinfopages413–416.
  7. \bibinfotitleApplication of vortex identification schemes to direct numerical simulation data of a transitional boundary layer. \bibinfojournalPhysics of Fluids \bibinfovolume25, \bibinfopages015102.
  8. \bibinfotitleDetection and visualization of vortices. \bibinfojournalThe visualization handbook \bibinfovolume295.
  9. \bibinfotitleVorticity and vortex dynamics in complex turbulent flows. \bibinfojournalTransactions of the Canadian Society for Mechanical Engineering \bibinfovolume11, \bibinfopages21–35.
  10. \bibinfotitleNew omega vortex identification method. \bibinfojournalScience China Physics, Mechanics & Astronomy \bibinfovolume59, \bibinfopages1–9.
  11. \bibinfotitleOn the identification of a vortex. \bibinfojournalJournal of fluid mechanics \bibinfovolume285, \bibinfopages69–94.
  12. \bibinfotitleA general classification of three-dimensional flow fields. \bibinfojournalPhysics of Fluids A: Fluid Dynamics \bibinfovolume2, \bibinfopages765–777.
  13. \bibinfotitleCombining piv, pod and vortex identification algorithms for the study of unsteady turbulent swirling flows. \bibinfojournalMeasurement Science and technology \bibinfovolume12, \bibinfopages1422.
  14. \bibinfotitleSelective visualization of vortices in hydrodynamic flows, in: \bibinfobooktitleProceedings Visualization’98 (Cat. No. 98CB36276), \bibinfoorganizationIEEE. pp. \bibinfopages419–422.
  15. \bibinfotitleEfficient computation of null geodesics with applications to coherent vortex detection. \bibinfojournalProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences \bibinfovolume473, \bibinfopages20160807.
  16. \bibinfotitleDefining coherent vortices objectively from the vorticity. \bibinfojournalJournal of Fluid Mechanics \bibinfovolume795, \bibinfopages136–173.
  17. \bibinfotitleA novel improved fruit fly optimization algorithm for aerodynamic shape design optimization. \bibinfojournalKnowledge-Based Systems \bibinfovolume179, \bibinfopages77–91.
  18. \bibinfotitleMulti-output gaussian process prediction for computationally expensive problems with multiple levels of fidelity. \bibinfojournalKnowledge-Based Systems \bibinfovolume227, \bibinfopages107151.
  19. \bibinfotitleKnowledge-based turbomachinery design system via a deep neural network and multi-output gaussian process. \bibinfojournalKnowledge-Based Systems \bibinfovolume252, \bibinfopages109352.
  20. \bibinfotitleAerodynamic data predictions based on multi-task learning. \bibinfojournalApplied Soft Computing \bibinfovolume116, \bibinfopages108369.
  21. \bibinfotitleFlow field reconstructions with gans based on radial basis functions. \bibinfojournalIEEE Transactions on Aerospace and Electronic Systems \bibinfovolume58, \bibinfopages3460–3476.
  22. \bibinfotitleReview of vortex identification methods, in: \bibinfobooktitle55th AIAA aerospace sciences meeting, p. \bibinfopages0989.
  23. \bibinfotitleOcean eddy identification and tracking using neural networks, in: \bibinfobooktitleIGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, \bibinfoorganizationIEEE. pp. \bibinfopages6887–6890.
  24. \bibinfotitleEddynet: A deep neural network for pixel-wise classification of oceanic eddies, in: \bibinfobooktitleIGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, \bibinfoorganizationIEEE. pp. \bibinfopages1764–1767.
  25. \bibinfotitleVortex detection on unsteady cfd simulations using recurrent neural networks, in: \bibinfobooktitle2018 Fluid dynamics conference, p. \bibinfopages3724.
  26. \bibinfotitleA rapid vortex identification method using fully convolutional segmentation network. \bibinfojournalThe Visual Computer \bibinfovolume37, \bibinfopages261–273.
  27. \bibinfotitleVortex-u-net: An efficient and effective vortex detection approach based on u-net structure. \bibinfojournalApplied Soft Computing \bibinfovolume115, \bibinfopages108229.
  28. \bibinfotitleVortex formation in the wake of an oscillating cylinder. \bibinfojournalJournal of fluids and structures \bibinfovolume2, \bibinfopages355–381.
  29. \bibinfotitleSimulation of cylindrical body structure subjected to flow in different reynolds number regimes. \bibinfojournalMuthanna J Eng Technol (MJET) \bibinfovolume6.
  30. \bibinfotitleVortex shedding suppression and wake control: A review. \bibinfojournalOcean Engineering \bibinfovolume126, \bibinfopages57–80.
  31. \bibinfotitleMode classification for vortex shedding from an oscillating wind turbine using machine learning, in: \bibinfobooktitleJournal of Physics: Conference Series, \bibinfoorganizationIOP Publishing. p. \bibinfopages012009.
  32. \bibinfotitleDetecting exotic wakes with hydrodynamic sensors. \bibinfojournalTheoretical and Computational Fluid Dynamics \bibinfovolume33, \bibinfopages235–254.
  33. \bibinfotitleVortex wakes of a flapping foil. \bibinfojournalJournal of Fluid Mechanics \bibinfovolume633, \bibinfopages411–423.
  34. \bibinfotitleClassifying vortex wakes using neural networks. \bibinfojournalBioinspiration & biomimetics \bibinfovolume13, \bibinfopages025003.
  35. \bibinfotitleTraining bioinspired sensors to classify flows. \bibinfojournalBioinspiration & biomimetics \bibinfovolume14, \bibinfopages016009.
  36. \bibinfotitleClassifying wakes produced by self-propelled fish-like swimmers using neural networks. \bibinfojournalTheoretical and Applied Mechanics Letters \bibinfovolume10, \bibinfopages149–154.
  37. \bibinfotitleA machine learning approach to classify vortex wakes of energy harvesting oscillating foils. \bibinfojournalarXiv preprint arXiv:2205.06367.
  38. \bibinfotitleVorticity and vortex dynamics. \bibinfopublisherSpringer Science & Business Media.
  39. \bibinfotitleThird generation of vortex identification methods: Omega and liutex/rortex based systems. \bibinfojournalJournal of Hydrodynamics \bibinfovolume31, \bibinfopages205–223.
  40. \bibinfotitleNumerical solution of the navier-stokes equations. \bibinfojournalMathematics of computation \bibinfovolume22, \bibinfopages745–762.
  41. \bibinfotitleThe finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM® and Matlab®. \bibinfopublisherSpringer.
  42. \bibinfotitleWake-induced vibration interference between a fixed square cylinder and a 2-dof downstream square cylinder at low reynolds numbers. \bibinfojournalOcean Engineering \bibinfovolume164, \bibinfopages698–711.
  43. \bibinfotitleNetcdf: an interface for scientific data access. \bibinfojournalIEEE computer graphics and applications \bibinfovolume10, \bibinfopages76–82.
  44. \bibinfotitleA general finite difference method for arbitrary meshes. \bibinfojournalComputers & Structures \bibinfovolume5, \bibinfopages45–57.
  45. \bibinfotitleGeneric objective vortices for flow visualization. \bibinfojournalACM Transactions on Graphics (TOG) \bibinfovolume36, \bibinfopages1–11.
  46. \bibinfotitleFree computational fluid dynamics. \bibinfojournalClusterWorld \bibinfovolume2, \bibinfopages7.
  47. \bibinfotitleVector field topology of time-dependent flows in a steady reference frame. \bibinfojournalIEEE Transactions on Visualization and Computer Graphics \bibinfovolume26, \bibinfopages280–290.
  48. \bibinfotitleA cnn-based vortex identification method. \bibinfojournalJournal of Visualization \bibinfovolume22, \bibinfopages65–78.

Summary

We haven't generated a summary for this paper yet.